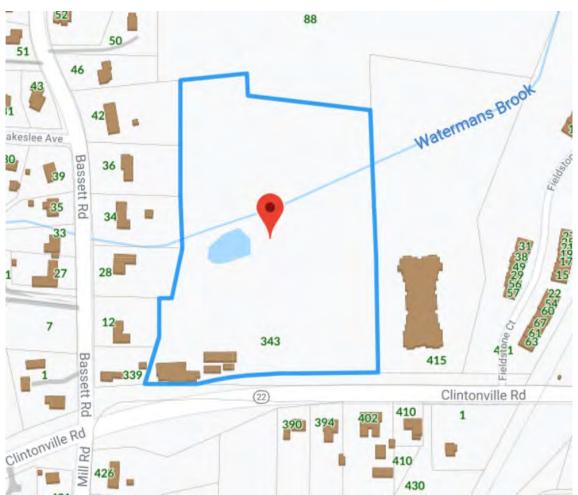


DRAINAGE REPORT

Proposed Elderly Housing Development | 343 Clintonville Road | North Haven, Connecticut


October 27, 2020 (Revised December 8, 2020) MMI #2709-13

This stormwater drainage report has been prepared in support of a proposed site plan application for the 343 Clintonville Road elderly housing development in the town of North Haven, Connecticut. The applicant proposes to construct two multistory buildings with 120 residential units total as well as an associated clubhouse with outdoor patio.

The ± 12.8 -acre parcel abuts residential properties to the west, the ACES – Wintergreen Interdistrict Magnet School to the north, and the Tuscan Villa development to the east. The parcel was previously zoned as R40 and has recently been approved to be zoned as Elderly Housing (EH). The parcel is mostly wooded north of Waterman's Brook with farmland to the south of the brook along with a farmhouse with multiple greenhouses. The site is moderately sloped from the southeast corner to the north-northwest.

Access to the new development will be provided by two new entrance drives, one off Clintonville Road to the south and one connecting to the Tuscan Villa development to the east. The new buildings and clubhouse will be served by the public water service located in Clintonville Road. A proposed sanitary sewer lateral will be installed to serve the two buildings and clubhouse and will connect to the existing sewer service running through the middle of the parcel. All other utilities such as electric, telephone, cable, and gas will be provided by the existing services adjacent to the project site and shall be located underground.

Figure 1 – 343 Clintonville Road, North Haven, Connecticut

Table 1 – Stormwater Data

Total Parcel Size	12.8 acres
Existing On-Site Impervious Area	0.4 acres
Proposed On-Site Impervious Area	3.1 acres
Soil Types (Hydrologic Soil Group)	"A," "B," and "C"
Existing Land Use	Woods, open space, straight row crops, gravel, bituminous, and building
Proposed Land Use	Woods, open space, gravel, bituminous, and building
Design Storm for Stormwater Management	No increases in peak rates of runoff for the 2-,10-, 25-, 50-, and 100-year storms.
Design Storm for Storm Drainage	25-year storm
Federal Emergency Management Agency Special Flood Hazard Areas	Not applicable
Connecticut Department of Energy & Environmental Protection Aquifer Protection Areas	Not applicable

STORMWATER MANAGEMENT APPROACH

The stormwater management system for this site has been designed utilizing Best Management Practices (BMPs) to provide water quality management while attenuating the proposed peak-flow rates from the development. The design goal is to provide water quality treatment in accordance with the Connecticut Department of Energy & Environmental Protection (CTDEEP) requirements for Water Quality Volume (WQV) and prevent increases in the predevelopment runoff rates from the project site. Existing drainage patterns will be maintained to the maximum extent practicable, and a stormwater treatment train is proposed including several water quality measures such as catch basins with 2-foot sumps, a hydrodynamic separator, riprap energy dissipators, sediment forebays, and retention volume within the proposed stormwater management basin.

The proposed project will include one stormwater management basin that is designed to detain the proposed stormwater peak discharge rates and provide retention storage to address water quality. The detention basin is designated on the plans as Basin 210.

The computer program entitled *Hydraflow Storm Sewers Extension for AutoCAD* © *Civil 3D* © *2019* by Autodesk, Inc., Version 10.5, was used for designing the proposed storm drainage collection system. Storm drainage computations performed include pipe capacity, hydraulic grade line, and gutter flow calculations. The contributing watershed to each individual catch basin inlet was delineated to determine drainage area and land coverage. These values were used to determine the stormwater runoff to each inlet using the Rational Method. The rainfall intensities for the site were obtained from the National Oceanic and Atmospheric Administration (NOAA) Atlas 14, Volume 10 Precipitation Frequency Data Server (PFDS). The proposed storm drainage system is designed to provide adequate pipe capacity to convey the 25-year storm event.

WATER QUALITY MANAGEMENT

Stormwater runoff from the proposed improvements will be collected by a subsurface pipe and catch basin drainage system. The proposed drainage system will include catch basins with 2-foot sumps to trap sediment and debris. In addition, a proprietary hydrodynamic separator is proposed as part of the main storm drainage system that discharges to Basin 210. The hydrodynamic separator was sized to meet Water Quality Flow (WQF) standards from CTDEEP's *2004 Stormwater Quality Manual*, which is the peak-flow rate associated with the WQV, and sized based on manufacturer's specifications, as recommended in the manual.

The stormwater management basin was sized following recommendations set forth in CTDEEP's 2004 Stormwater Quality Manual. The manual (Chapter 7) recommends methods for sizing stormwater treatment measures with WQV computations. The WQV addresses the initial stormwater runoff, also commonly referred to as the "first flush" runoff. The WQV provides adequate volume to store the initial 1 inch of runoff, which tends to contain the highest concentrations of potential pollutants. The WQV has been provided within the volume of the proposed stormwater management basin below the first outlet discharge from the outlet control structure. All supporting calculations for the volume provided as well as WQV computations have been included in the Appendix of this report.

A sediment forebay is proposed around the proposed drainage pipe that daylights into the stormwater management basin, which will improve water quality by trapping floatables as well as filtering coarse sediment and other pollutants. Riprap splash pads will dissipate the potential erosive velocity of

stormwater entering the basin as well as trap sediment. The sediment forebay will contain the deposited sediment within a small area of the basin and allow for maintenance accessibility.

HYDROLOGIC ANALYSIS

A hydrologic analysis was conducted to analyze the predevelopment and post-development peak-flow rates from the site. Four analysis points consisting of four existing subwatersheds were chosen based on the fact that each area receives stormwater runoff from a portion of the project. Analysis Point A was created to analyze the portion of the site draining toward the western property boundary. Analysis Point B analyzes the portion of the site draining to the existing wetlands north of the proposed site. Analysis Point C analyzes the relatively small area that drains south toward Clintonville Road. Analysis Point D analyzes the portion of the site that drains to the eastern property. The total combined watershed area delineated is approximately 7.7 acres under both existing and proposed conditions.

The method of predicting the surface water runoff rates utilized in this analysis was a computer program entitled *Hydraflow Hydrographs Extension for AutoCAD*® *Civil 3D*® *2019* by Autodesk, Inc., Version 2020. The *Hydrographs* program is a computer model that utilizes the methodologies set forth in the *Technical Release No. 55* (TR-55) manual and the *Technical Release No. 20* (TR-20) computer model, originally developed by the United States Department of Agriculture – Natural Resources Conservation Service (USDA-NRCS). The *Hydrographs* computer modeling program is primarily used for conducting hydrology studies such as this one.

The *Hydrographs* computer program forecasts the rate of surface water runoff based upon several factors. The input data includes information on land use, hydrologic soil type, vegetation, contributing watershed area, time of concentration, rainfall data, storage volumes, and the hydraulic capacity of structures. The computer model predicts the amount of runoff as a function of time, with the ability to include the attenuation effect due to dams, lakes, large wetlands, floodplains, and the stormwater management basin. The input data for rainfalls with statistical recurrence frequencies of 2, 10, 25, 50, and 100 years was obtained from the NOAA Atlas 14, Volume 10 database. The corresponding rainfall totals are listed below.

Storm Frequency	Rainfall (inches)
2-year	3.48
10-year	5.36
25-year	6.54
50-year	7.41
100-year	8.36

Land use for the site under existing and proposed conditions was determined from field survey and aerial photogrammetry. Land use types used in the analysis included woods, grassed or open space, building, impervious (paved) cover, gravel, and agriculture. Soil types in the watershed were determined from the CTDEEP Geographic Information System (GIS) database of the USDA-NRCS soil survey for New Haven County, Connecticut. For the analysis, the site was determined to contain hydrologic soil types "A," "B," and "C" as classified by USDA-NRCS. The different land uses and soil types were utilized to determine composite runoff Curve Numbers (CN) for each subwatershed. The time of concentration (Tc) was estimated for each subwatershed using the TR-55 methodology that was computed by summing all travel times through the watershed as sheet flow, shallow concentrated flow, and channel flow.

The existing conditions were modeled with the *Hydrographs* program to determine the peak-flow rates for the various storm events at each analysis point. A revised model was developed incorporating the proposed site conditions; the flows obtained with the revised model were then compared to the results of the existing conditions model. Peak-flow rates from the project site were controlled by the storage volume provided within the stormwater basin and the hydraulic capacity of the outlet control structure. Stormwater Management Basin 210 has been designed to provide a minimum of 1 foot of freeboard to the top of the embankment during the 100-year storm event. The following peak rates of runoff were obtained from the *Hydrographs* hydrology results:

Analysis Point	Analysis Point A – Western Property Boundary – West													
	Peak Runoff Rate (cubic feet per second)													
Storm Frequency (years)	2	10	25	50	100									
Existing Conditions	0.43	1.74	2.79	3.64	4.61									
Proposed Conditions	0.01	0.19	0.59	1.04	1.62									

Analysis Point	B – Existin	Analysis Point B – Existing Wetland Boundary – North													
	Peak Runoff Rate (cubic feet per second)														
Storm Frequency (years)	2	10	25	50	100										
Existing Conditions	0.52	3.85	7.05	9.76	12.94										
Proposed Conditions	0.25	1.58	3.01	4.68	10.65										

Detention Basin 210*												
	Water Surface Elevation (feet)											
Storm Frequency (years)	2	10	25	50	100							
Proposed Conditions	58.17	59.33	60.03	60.43	60.71							

*Top of basin berm elevation at 62.0 feet

Analysis Point C – Clintonville Road – Southeast												
	Peak Runoff Rate (cubic feet per second)											
Storm Frequency (years)	2	10	25	50	100							
Existing Conditions	0.00	0.00	0.01	0.02	0.04							
Proposed Conditions	0.00	0.04	0.09	0.13	0.18							

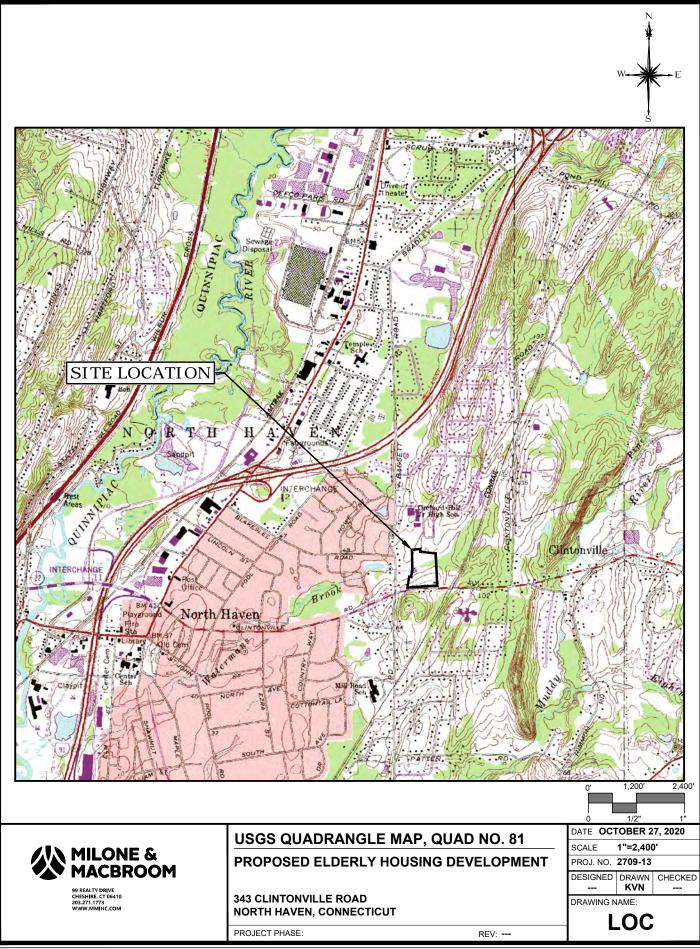
Analysis Poir	nt D – Easter	n Property	Boundary –	East								
	Peak Runoff Rate (cubic feet per second)											
Storm Frequency (years)	2	10	25	50	100							
Existing Conditions	0.00	0.00	0.00	0.00	0.01							
Proposed Conditions	0.00	0.00	0.00	0.00	0.01							

CONCLUSION

The results of the hydrologic analysis demonstrate that there will be no increases in peak-flow rates from the proposed development at all but one point of analysis. The increase in peak flow for point of analysis C is the result of a proposed sidewalk connecting to the adjacent sidewalk in the right-of-way. This relatively small increase in peak flow to the analysis point is negligible and does not pose any negative downstream impact. The overall decrease in peak flows was achieved for the storm events modeled through a planned stormwater management system with detention provided in the proposed stormwater/water quality basin.

The proposed development will introduce a new stormwater treatment train consisting of several water quality measures such as catch basins with 2-foot sumps, a hydrodynamic separator, riprap energy dissipators, sediment forebay, and retention volume within the proposed stormwater/water quality basin. A hydrodynamic separator will be employed in the main storm drainage system that discharges to the stormwater basin (Basin 210) to enhance sediment removal. Furthermore, the sediment forebay will filter coarse sediment prior to stormwater runoff entering the detention basin. The CTDEEP WQV has been provided within the retention storage in the proposed stormwater/water quality basin.

All supporting documentation and stormwater-related computations are attached to this report along with the *Hydraflow Hydrographs* model results for stormwater management and the *Hydraflow Storm Sewers* model results for the proposed storm drainage system. Illustrative watershed maps for both existing and proposed conditions are also attached to this report.

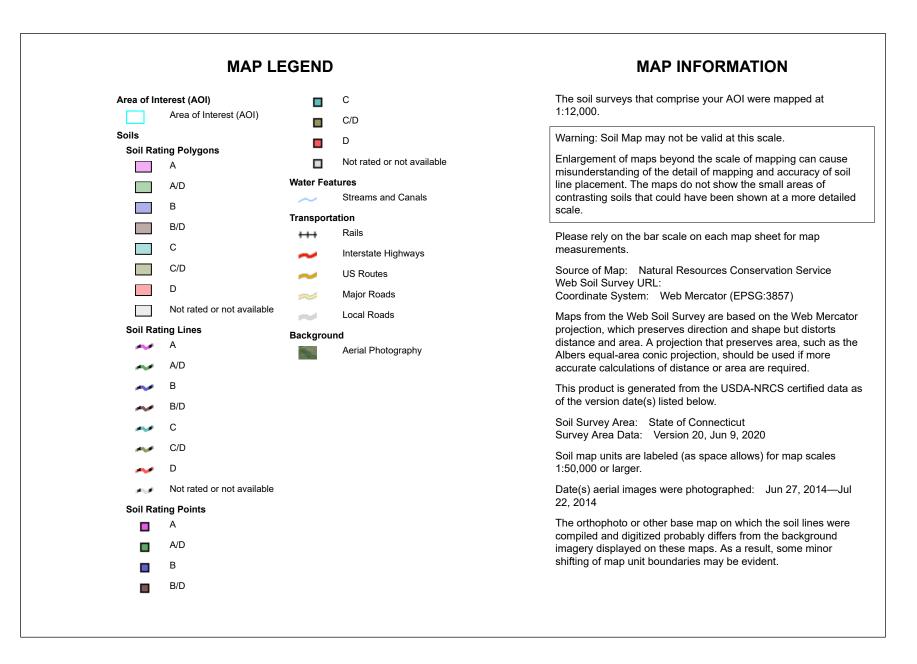

Attachments

Attachment A – United States Geological Survey Location Map Attachment B – Natural Resources Conservation Service Hydrologic Soil Group Map Attachment C – Storm Drainage Computations Attachment D – Water Quality Computations Attachment E – Hydrologic Analysis – Input Computations Attachment F – Hydrologic Analysis – Computer Model Results Attachment G – Watershed Maps

2709-13-d820-rpt.docx

ATTACHMENT A UNITED STATES GEOLOGICAL SURVEY LOCATION MAP

Copyright Milone & MacBroom, Inc - 2019



ATTACHMENT B

NATURAL RESOURCES CONSERVATION SERVICE HYDROLOGIC SOIL GROUP MAP

USDA

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
12	Raypol silt loam	C/D	10.2	28.0%
37C	Manchester gravelly sandy loam, 3 to 15 percent slopes	A	19.6	54.2%
77C	Cheshire-Holyoke complex, 3 to 15 percent slopes, very rocky	В	0.8	2.2%
77D	Cheshire-Holyoke complex, 15 to 35 percent slopes, very rocky	В	2.2	6.0%
308	Udorthents, smoothed	С	3.5	9.6%
Totals for Area of Inter	est		36.2	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher

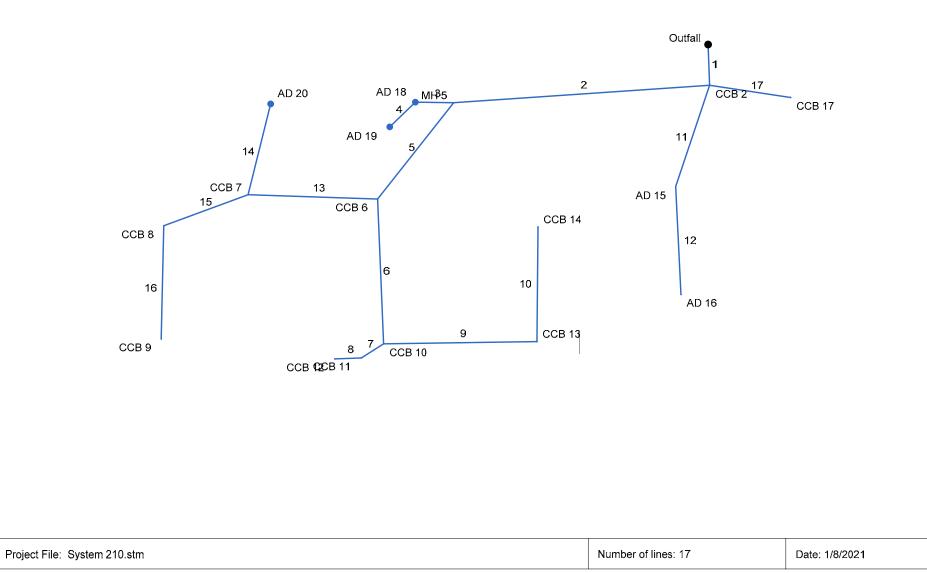
ATTACHMENT C STORM DRAINAGE COMPUTATIONS

	Rationa	I Method	Individua	al Basin (Calculati	ons									
Project:	Prop. Elderly H	ousing Develo	pment	By:	KVN	Date	Rev.1/08/21								
-	North Haven, C			Checked:		Date:									
Basin Name	Impervious Area C=0.9 (sf)	AreaAreaAreaTotal AreaTotal AreaWeightedC=0.9C=0.3C=0.2(sf)(ac)C					Tc to Inlet (min)								
	(sf) (sf) (sf) System 210														
CCB 2	9,400	6,143	696	16,239	0.37	0.64	10.0								
CCB 6	6,316	175	0	6,491	0.15	0.88	5.0								
CCB 7	11,000	2,363	0	13,363	0.31	0.79	5.0								
CCB 8	13,588	6,735	0	20,323	0.47	0.70	5.0								
CCB 9	6,633	9,257	0	15,890	0.36	0.55	10.0								
CCB 10	5,926	4,939	0	10,865	0.25	0.63	10.0								
CCB 11	1,909	0	0	1,909	0.04	0.90	5.0								
CCB 12	1,631	0	0	1,631	0.04	0.90	5.0								
CCB 13	5,716	14,015	6463	26,194	0.60	0.41	15.9								
CCB 14	6,125	4,390	0	10,515	0.24	0.65	5.0								
AD 15	0	3,066	0	3,066	0.07	0.30	5.0								
AD 16	0	1,792	0	1,792	0.04	0.30	5.0								
CCB 17	991	375	0	1,366	0.03	0.74	5.0								
AD 18	1,700	124	0	1,824	0.04	0.86	5.0								
AD 19	3,481	607	0	4,088	0.09	0.81	5.0								
AD 20	2,592	466	0	3,058	0.07	0.81	5.0								

Pational Mathed Individual Pacin Calculations

 $Q = C \times I \times A$, Where:

C = Runoff Coefficient


I = Rainfall Intensity (in/hr) => Tc = 5 min => i= 9.22 in/hr (25-year storm)

A = Area (acres)

Q = Flow (cfs)

	BLD TO	BLD TO	BLD TO
	CCB 9	AD 15	AD19
С	0.90	0.90	0.90
I	9.22	9.22	9.22
А	0.54	0.54	0.08
Q	4.48	4.48	0.65

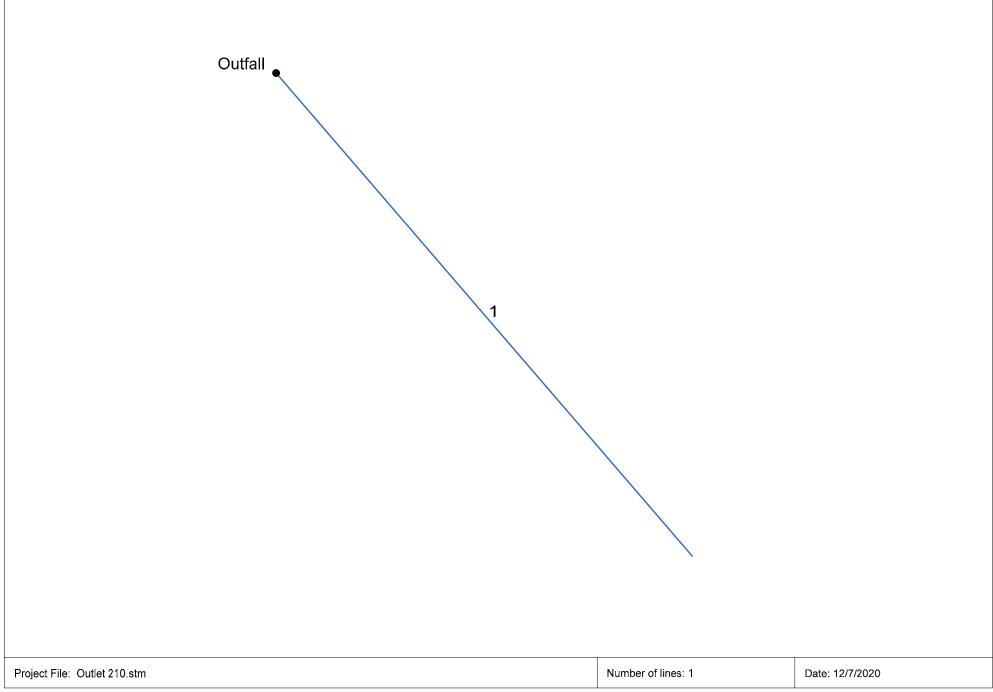
Hydraflow Storm Sewers Extension for Autodesk® AutoCAD® Civil 3D® Plan

Storm Sewer Inventory Report

ine	Alignment Flow Data									Physical	l Data	Line ID					
lo.	Dnstr Line No.	Line Length (ft)	Defl angle (deg)	Junc Type	Known Q (cfs)	Drng Area (ac)	Runoff Coeff (C)	Inlet Time (min)	Invert El Dn (ft)	Line Slope (%)	Invert El Up (ft)	Line Size (in)	Line Shape	N Value (n)	J-Loss Coeff (K)	Inlet/ Rim El (ft)	
1	End	31.000	87.948	Curb	0.00	0.37	0.64	10.0	56.00	3.23	57.00	24	Cir	0.012	2.04	66.10	FES 1-CCB 2
2	1	194.000	88.144	мн	0.00	0.00	0.00	0.0	57.00	0.93	58.80	24	Cir	0.012	0.78	67.00	CCB 2-MH5
3	2	29.000	4.810	DrGrt	0.00	0.04	0.86	5.0	63.00	3.45	64.00	8	Cir	0.012	1.13	67.00	MH 5-AD 18
4	3	27.000	-45.000	DrGrt	0.65	0.09	0.81	5.0	64.00	1.11	64.30	8	Cir	0.012	1.00	67.20	AD 18-AD19
5	2	93.000	-47.865	Comb	0.00	0.15	0.88	5.0	58.80	0.65	59.40	24	Cir	0.012	1.26	65.50	MH 5-CCB 6
6	5	110.000	-40.603	Comb	0.00	0.25	0.63	10.0	59.80	1.27	61.20	18	Cir	0.012	1.50	69.00	CCB 6-CCB 10
7	6	20.000	59.944	Comb	0.00	0.04	0.90	5.0	65.50	1.00	65.70	12	Cir	0.012	0.84	69.40	CCB 10-CCB 11
8	7	20.000	30.441	Comb	0.00	0.04	0.90	5.0	65.70	1.50	66.00	12	Cir	0.012	1.00	69.30	CCB 11-CCB 12
9	6	116.000	-88.470	Comb	0.00	0.60	0.41	15.9	61.40	1.12	62.70	15	Cir	0.012	1.50	69.00	CCB 10-CCB 13
10	9	87.000	-88.666	Comb	0.00	0.24	0.65	5.0	63.00	0.80	63.70	12	Cir	0.012	1.00	67.20	CCB 13-CCB 14
11	1	81.000	20.485	DrGrt	4.48	0.07	0.30	5.0	57.00	6.42	62.20	12	Cir	0.012	0.62	67.20	CCB 2-AD 15
12	11	82.000	-21.236	DrGrt	0.00	0.04	0.30	5.0	62.20	2.20	64.00	12	Cir	0.012	1.00	67.20	AD 15-AD 16
13	5	98.000	53.681	Comb	0.00	0.31	0.79	5.0	59.40	1.12	60.50	24	Cir	0.012	1.50	64.40	CCB 6-CCB 7
14	13	71.000	102.000	DrGrt	0.00	0.07	0.81	5.0	60.50	3.38	62.90	12	Cir	0.012	1.00	66.00	CCB 7-AD 20
15	13	68.000	-22.149	Comb	0.00	0.47	0.70	5.0	61.00	0.88	61.60	24	Cir	0.012	1.41	64.50	CCB 7-CCB 8
16	15	86.000	-68.461	Comb	4.48	0.36	0.55	10.0	61.80	1.40	63.00	15	Cir	0.012	1.00	66.50	CCB 8-CCB 9
17	1	62.000	-79.383	Comb	0.00	0.03	0.74	5.0	57.00	9.03	62.60	12	Cir	0.012	1.00	66.00	MH 2-CCB 17
	File: Sve	tem 210.stm	 •									Number of lines: 17 Date: 1/8					/8/2021

Storm Sewer Tabulation

Statio	n	Len	Drng A	Area	Rnoff	Area x	(C	Тс		Rain	Total	Сар	Vel	Pipe		Invert El	ev	HGL Ek	ev	Grnd / R	im Elev	Line ID
Line	То	-	Incr	Total	coeff	Incr	Total	Inlet	Syst	-(1)	flow	full		Size	Slope	Dn	Up	Dn	Up	Dn	Up	_
	Line	(ft)	(ac)	(ac)	(C)			(min)	(min)	(in/hr)	(cfs)	(cfs)	(ft/s)	(in)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	
1	End	31.000		3.17	0.64	0.24	1.99	10.0	18.8	4.7	18.99	44.01	6.05	24	3.23	56.00	57.00	60.03	60.22	58.00	66.10	FES 1-CCB 2
2	1	194.000		2.66	0.00	0.00	1.70	0.0	18.0	4.8	13.33	23.60	4.24	24	0.93	57.00	58.80	61.38	61.95	66.10	67.00	CCB 2-MH5
3	2	29.000		0.13	0.86	0.03	0.11	5.0	5.1	9.1	1.63	2.43	6.22	8	3.45	63.00	64.00	63.40	64.59	67.00	67.00	MH 5-AD 18
4	3	27.000		0.09	0.81	0.07	0.07	5.0	5.0	9.2	1.32	1.38	4.20	8	1.11	64.00	64.30	64.59	64.84	67.00	67.20	AD 18-AD19
5	2	93.000	0.15	2.53	0.88	0.13	1.59	5.0	17.6	4.9	12.27	19.68	3.91	24	0.65	58.80	59.40	62.17	62.40	67.00	65.50	MH 5-CCB 6
6	5	110.000	0.25	1.17	0.63	0.16	0.63	10.0	16.6	5.1	3.20	12.83	1.81	18	1.27	59.80	61.20	62.70	62.79	65.50	69.00	CCB 6-CCB 10
7	6	20.000	0.04	0.08	0.90	0.04	0.07	5.0	5.2	9.1	0.65	3.86	3.24	12	1.00	65.50	65.70	65.78	66.04	69.00	69.40	CCB 10-CCB 11
8	7	20.000	0.04	0.04	0.90	0.04	0.04	5.0	5.0	9.2	0.33	4.73	1.88	12	1.50	65.70	66.00	66.04	66.24	69.40	69.30	CCB 11-CCB 12
9	6	116.000	0.60	0.84	0.41	0.25	0.40	15.9	15.9	5.2	2.09	7.41	2.74	15	1.12	61.40	62.70	62.86	63.28	69.00	69.00	CCB 10-CCB 13
10	9	87.000	0.24	0.24	0.65	0.16	0.16	5.0	5.0	9.2	1.44	3.46	3.90	12	0.80	63.00	63.70	63.45	64.21	69.00	67.20	CCB 13-CCB 14
11	1	81.000	0.07	0.11	0.30	0.02	0.03	5.0	6.5	8.3	4.75	9.78	6.21	12	6.42	57.00	62.20	61.38	63.10	66.10	67.20	CCB 2-AD 15
12	11	82.000	0.04	0.04	0.30	0.01	0.01	5.0	5.0	9.2	0.11	5.72	0.94	12	2.20	62.20	64.00	63.10	64.14	67.20	67.20	AD 15-AD 16
13	5	98.000	0.31	1.21	0.79	0.24	0.83	5.0	10.7	6.5	9.84	25.96	3.13	24	1.12	59.40	60.50	62.70	62.86	65.50	64.40	CCB 6-CCB 7
14	13	71.000	0.07	0.07	0.81	0.06	0.06	5.0	5.0	9.2	0.52	7.09	1.64	12	3.38	60.50	62.90	63.09	63.20	64.40	66.00	CCB 7-AD 20
15	13	68.000	0.47	0.83	0.70	0.33	0.53	5.0	10.3	6.6	7.96	23.02	2.83	24	0.88	61.00	61.60	63.09	63.11	64.40	64.50	CCB 7-CCB 8
16	15	86.000	0.36	0.36	0.55	0.20	0.20	10.0	10.0	6.7	5.81	8.26	5.19	15	1.40	61.80	63.00	63.33	63.97	64.50	66.50	CCB 8-CCB 9
17	1	62.000	0.03	0.03	0.74	0.02	0.02	5.0	5.0	9.2	0.20	11.59	1.15	12	9.03	57.00	62.60	61.38	62.79	66.10	66.00	MH 2-CCB 17
															l							
Proje	ct File:	System	1210.str	n												Number of lines: 17 Run Date: 1/8/2021					21	
	ES:Info	nsitv = 4	4.23/0	Inlət time	+ 3 90)	^ 0.72	Return r	eriod =V	/rs 25	c = cir	e = ellin	b = boy	· · · · ·			1						


Inlet Report

Line No	Inlet ID	Q = CIA	Q carry	Q capt	Q Byp	Junc	Curb Ir	let	Gra	te Inlet				G	utter					Inlet		Byp Line
NO		(cfs)	(cfs)	(cfs)	вур (cfs)	Туре	Ht (in)	L (ft)	Area (sqft)	L (ft)	W (ft)	So (ft/ft)	W (ft)	Sw (ft/ft)	Sx (ft/ft)	n	Depth (ft)	Spread (ft)		Spread (ft)	Depr (in)	No
1	CCB 2	1.58	0.00	1.58	0.00	Curb	4.0	2.74	0.00	0.00	0.00	Sag	2.00	0.050	0.020	0.013	0.29	11.38	0.29	11.38	0.0	Off
2	MH 5	0.00	0.00	0.00	0.00	мн	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.013	0.00	0.00	0.00	0.00	0.0	Off
3	AD 18	0.32	0.00	0.32	0.00	DrGrt	0.0	0.00	0.52	0.83	0.63	Sag	2.00	0.020	0.020	0.013	0.11	12.93	0.11	12.93	0.0	Off
4	AD 19	1.32*	0.00	1.32	0.00	DrGrt	0.0	0.00	0.52	0.83	0.63	Sag	2.00	0.020	0.020	0.013	0.28	30.32	0.28	30.32	0.0	Off
5	CCB 6	1.22	0.00	1.22	0.00	Comb	4.0	2.73	3.12	2.31	1.35	Sag	2.53	0.050	0.020	0.000	0.20	6.05	0.20	6.05	0.0	Off
6	CCB 10	1.05	0.00	1.05	0.00	Comb	4.0	2.73	3.12	2.31	1.35	Sag	2.53	0.031	0.031	0.000	0.20	6.36	0.20	6.36	0.0	Off
7	CCB 11	0.33	0.00	0.33	0.00	Comb	4.0	2.73	0.00	2.31	1.35	0.090	2.53	0.031	0.031	0.013	0.07	2.22	0.00	0.00	0.0	13
8	CCB 12	0.33	0.00	0.33	0.00	Comb	4.0	2.73	0.00	2.31	1.35	0.090	2.53	0.031	0.031	0.013	0.07	2.22	0.00	0.00	0.0	13
9	CCB 13	1.28	0.00	1.28	0.00	Comb	4.0	2.73	3.12	2.31	1.35	Sag	2.53	0.031	0.031	0.000	0.22	7.07	0.22	7.07	0.0	Off
10	CCB 14	1.44	0.00	1.44	0.00	Comb	4.0	2.73	3.12	2.31	1.35	Sag	2.53	0.031	0.031	0.000	0.23	7.56	0.23	7.56	0.0	Off
11	AD 15	4.67*	0.00	4.67	0.00	DrGrt	0.0	0.00	0.52	0.83	0.63	Sag	2.00	0.020	0.020	0.013	2.80	281.76	2.80	281.76	0.0	Off
12	AD 16	0.11	0.00	0.11	0.00	DrGrt	0.0	0.00	0.52	0.83	0.63	Sag	2.00	0.020	0.020	0.000	0.05	7.41	0.05	7.41	0.0	Off
13	CCB 7	2.26	0.00	2.26	0.00	Comb	4.0	2.73	3.12	2.31	1.35	Sag	2.53	0.031	0.031	0.000	0.30	9.80	0.30	9.80	0.0	Off
14	AD 20	0.52	0.00	0.52	0.00	DrGrt	0.0	0.00	0.52	0.83	0.63	Sag	2.00	0.020	0.020	0.013	0.15	17.25	0.15	17.25	0.0	Off
15	CCB 8	3.03	0.00	3.03	0.00	Comb	4.0	2.73	3.12	2.31	1.35	Sag	2.53	0.031	0.031	0.000	0.36	11.68	0.36	11.68	0.0	Off
16	CCB 9	5.81*	0.00	5.81	0.00	Comb	4.0	2.73	3.12	2.31	1.35	Sag	2.53	0.031	0.031	0.000	0.54	17.46	0.54	17.46	0.0	Off
17	CCB 17	0.20	0.00	0.20	0.00	Comb	4.0	2.73	0.00	2.31	1.35	0.020	2.53	0.031	0.031	0.013	0.08	2.46	0.00	0.00	0.0	Off
Projec	ct File: System 210.s	tm												Number	of lines:	17		R	un Date:	1/8/2021		
NOTE	S: Inlet N-Values = (0.016; Inte	ensity = 4	4.23 / (lı	nlet time	+ 3.90) /	0.72; I	Return p	eriod = 2	25 Yrs. ;	* Indica	tes Know	vn Q ado	ded. All c	urb inlets	s are thr	oat.					

Hydraulic Grade Line Computations

ine S	Size	Q			D	ownstro	eam				Len				Upstr	eam				Chec	k	JL	Mino
((in)	(cfs)	Invert elev (ft)	HGL elev (ft)	Depth (ft)	Area (sqft)	Vel (ft/s)	Vel head (ft)	EGL elev (ft)	Sf (%)	(ft)	Invert elev (ft)	HGL elev (ft)	Depth (ft)	Area (sqft)	Vel (ft/s)	Vel head (ft)	EGL elev (ft)	Sf (%)	Ave Sf (%)	Enrgy loss (ft)	coeff (K)	loss (ft)
1	24	18.99	56.00	60.03	2.00	3.14	6.05	0.57	60.60	0.601	31.000	57.00	60.22	2.00	3.14	6.04	0.57	60.78	0.601	0.601	0.186	2.04	1.16
2	24	13.33	57.00	61.38	2.00	3.14	4.25	0.28	61.66	0.296			61.95	2.00	3.14	4.24	0.28	62.23	0.296	0.296	0.575	0.78	0.22
3	8	1.63	63.00	63.40	0.40*	0.22	7.46	0.39	63.79	0.000	29.000	64.00	64.59	0.59**	0.33	4.99	0.39	64.98	0.000	0.000	n/a	1.13	n/a
4	8	1.32	64.00	64.59	0.59	0.30	4.04	0.29	64.88	0.000	27.000	64.30	64.84 j	0.54**	0.30	4.35	0.29	65.14	0.000	0.000	n/a	1.00	0.29
5	24	12.27	58.80	62.17	2.00	3.14	3.91	0.24	62.41	0.251	93.000	59.40	62.40	2.00	3.14	3.90	0.24	62.64	0.251	0.251	0.233	1.26	0.30
6	18	3.20	59.80	62.70	1.50	1.77	1.81	0.05	62.75	0.079	110.00	061.20	62.79	1.50	1.77	1.81	0.05	62.84	0.079	0.079	0.087	1.50	0.08
7	12	0.65	65.50	65.78	0.28*	0.18	3.66	0.12	65.90	0.000	20.000	65.70	66.04	0.34**	0.23	2.82	0.12	66.16	0.000	0.000	n/a	0.84	n/a
8	12	0.33	65.70	66.04	0.34	0.14	1.43	0.08	66.12	0.000	20.000	66.00	66.24 j	0.24**	0.14	2.33	0.08	66.32	0.000	0.000	n/a	1.00	n/a
9	15	2.09	61.40	62.86	1.25	0.55	1.70	0.04	62.91	0.089	116.00	062.70	63.28 j	0.58**	0.55	3.78	0.22	63.50	0.474	0.281	n/a	1.50	0.33
10	12	1.44	63.00	63.45	0.45*	0.34	4.20	0.20	63.65	0.000	87.000	63.70	64.21	0.51**	0.40	3.59	0.20	64.41	0.000	0.000	n/a	1.00	0.20
11	12	4.75	57.00	61.38	1.00	0.75	6.05	0.57	61.94	1.518	81.000	62.20	63.10 j	0.90**	0.75	6.37	0.63	63.73	1.333	1.426	n/a	0.62	n/a
12	12	0.11	62.20	63.10	0.90	0.06	0.15	0.05	63.15	0.000	82.000	64.00	64.14 j	0.14**	0.06	1.73	0.05	64.18	0.000	0.000	n/a	1.00	n/a
13	24	9.84	59.40	62.70	2.00	3.14	3.13	0.15	62.85	0.161	98.000	60.50	62.86	2.00	3.14	3.13	0.15	63.01	0.161	0.161	0.158	1.50	0.23
14	12	0.52	60.50	63.09	1.00	0.20	0.67	0.01	63.09	0.018	71.000	62.90	63.20 j	0.30**	0.20	2.61	0.11	63.31	0.467	0.242	0.172	1.00	0.11
15	24	7.96	61.00	63.09	2.00	3.14	2.53	0.10	63.19	0.106	68.000	61.60	63.11	1.51	2.55	3.12	0.15	63.26	0.124	0.115	0.078	1.41	0.21
16	15	5.81	61.80	63.33	1.25	1.03	4.73	0.35	63.67	0.689	86.000	63.00	63.97 j	0.97**	1.03	5.66	0.50	64.47	0.760	0.724	n/a	1.00	0.50
17	12	0.20	57.00	61.38	1.00	0.10	0.26	0.00	61.38	0.003	62.000	62.60	62.79 j	0.19**	0.10	2.04	0.06	62.85	0.500	0.252	n/a	1.00	n/a
Proje	ct File: {	System 2	10.stm											 N	umber o	f lines: 1	7		Rur	Date:	1/8/2021		

Hydraflow Storm Sewers Extension for Autodesk® AutoCAD® Civil 3D® Plan

Storm Sewer Inventory Report

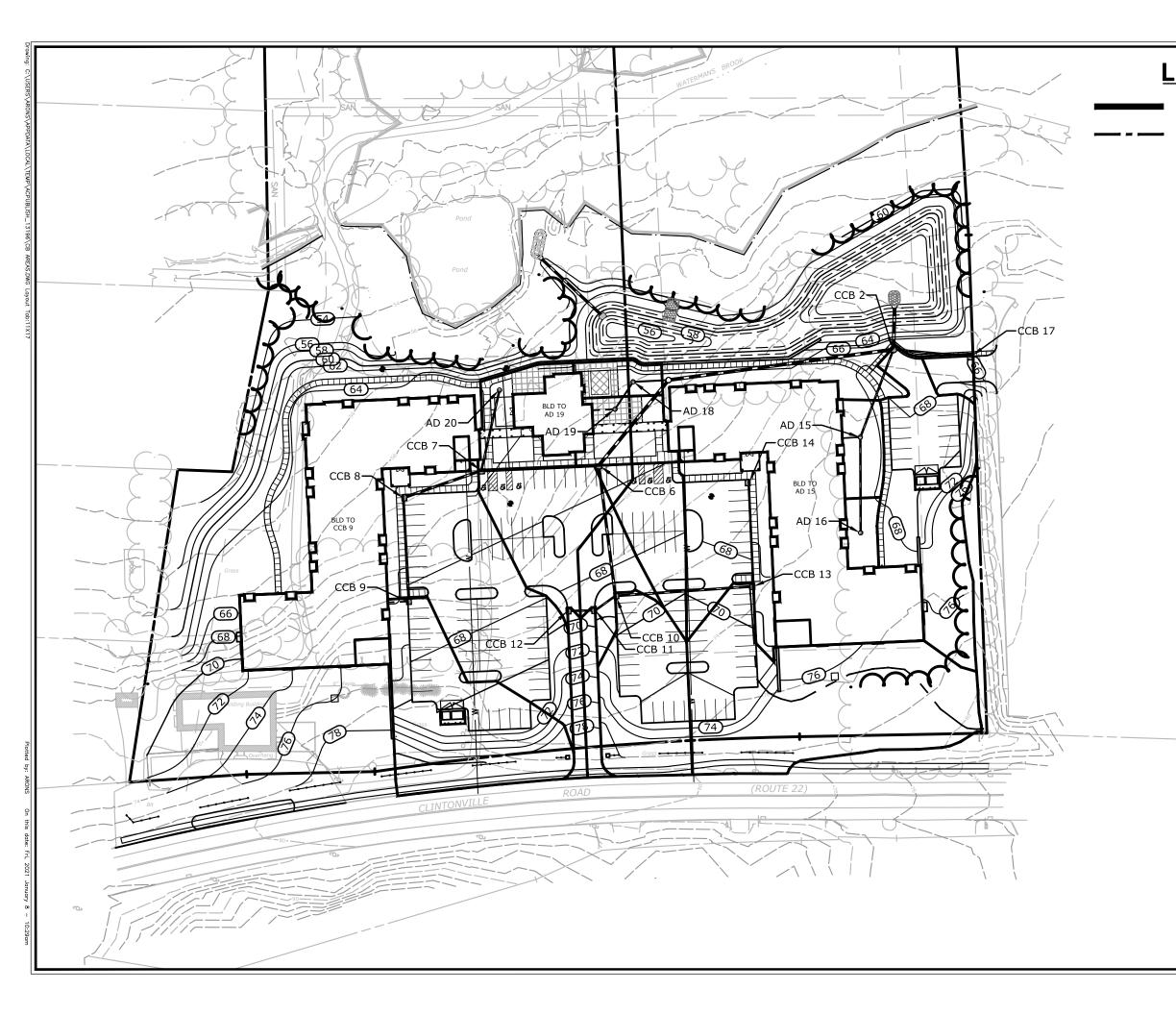
Drng Area Station Rnoff Area x C Тс Rain Total Cap Vel Pipe Invert Elev HGL Elev Grnd / Rim Elev Line ID Len coeff (I) flow full Line То Size Dn Up Incr Total Incr Total Inlet Syst Slope Dn Up Dn Up Line (ft) (ft) (ft) (C) (min) (in/hr) (cfs) (cfs) (ft/s) (in) (%) (ft) (ft) (ft) (ft) (ac) (ac) (min) 55.50 1 End 71.000 0.00 0.00 0.00 0.00 0.00 0.0 0.0 0.0 9.25 9.55 6.16 18 0.70 56.00 56.67 57.20 56.55 61.17 FES 210-OCS 21 Project File: Outlet 210.stm Number of lines: 1 Run Date: 12/7/2020 NOTES:Intensity = 53.32 / (Inlet time + 3.60) ^ 0.71; Return period =Yrs. 100; c = cir e = ellip b = box

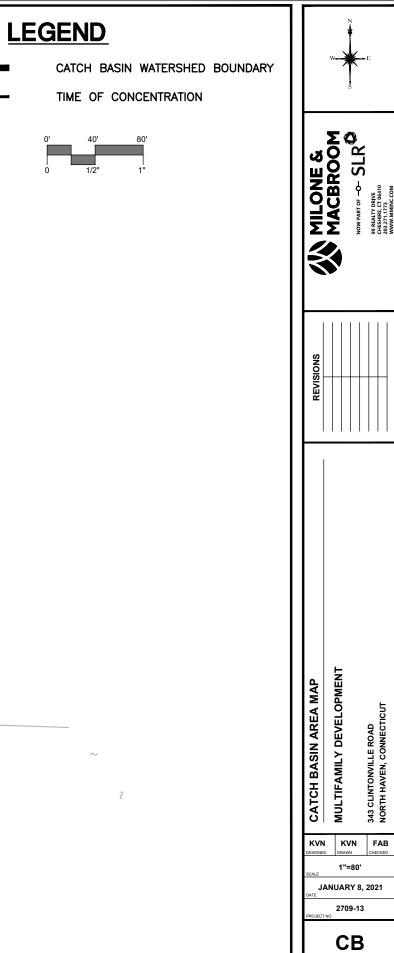
Storm Sewer Tabulation

Page 1

Hydraulic Grade Line Computations

.ine	Size	Q			D	ownstre	am				Len				Upsti	ream				Chec	k	JL	Mino
	(in)	(cfs)	Invert elev (ft)	HGL elev (ft)	Depth (ft)		Vel (ft/s)	Vel head (ft)	EGL elev (ft)	Sf (%)		Invert elev (ft)	HGL elev (ft)	Depth (ft)	Area (sqft)	Vel (ft/s)	Vel head (ft)	EGL elev (ft)	Sf (%)	Sf	Enrgy loss (ft)		loss (ft)
1	18	9.25	55.50	56.67	1.17		6.23	0.60	57.28		71.000		57.20	1.20	1.52	6.09	0.58	57.78	0.689		0.501	1.00	0.58
Proj	ect File: 0	Dutlet 21	0.stm											 N	umber o	f lines: 1			Ru	n Date: <i>1</i>	12/7/202	0	


	Outlet Protection	on Calculations			
Location: North Hav Outlet I.D. FES 1	nville Road (MMI: 2709-13 ren, Connecticut		<u>By: KVN</u> <u>Checked:</u>	<u>Date:</u> 01/08/21 Date:	
Description:	DOT Drainage Manual, Se				
Preformed Scour H					
Design Criteria (25-yr		D (ft)-	0		
Q (cfs) = 18.99		$R_p(ft) =$	2 2		
D (in) = 24 V (fps) = 6.05		S _p (ft) = Tw (ft)=	2 4.03		
T _w = Tailwater depth	e for circular sections of m (ft) 1. A <i>Preformed Scour Hole</i> <u>Rip Rap Specific</u> Modified	<u>e is used One Half Pi</u>			
0.7	Modified			5 Inches	
0.7					
Preformed Scour Hole	Dimensions:				
Preformed Scour Hole F = 0.5(R _p)	Dimensions:	=	1 ft		
Preformed Scour Hole $F = 0.5(R_p)$ $C = 3.0(S_p)+6.0(F)$	<u>Dimensions:</u>	= =	1 ft 12 ft		
Preformed Scour Hole F = 0.5(R _p)	<u>Dimensions:</u>				


Level Spreader Design

Level Spreader 210

Broad Crest Elevation (ft)	56.00
Length (ft)	<u>20</u>
Discharge Coefficient	3.2
Elevation Increment	0.02
Q-100 year (cfs)	9.25 (DET 210 Discharge)

	Weir Discharge	Area	Velocity
Elevation (Feet)	(cfs)	(sf)	(fps)
56.00	0.00	0.00	0.00
56.02	0.18	0.40	0.45
56.04	0.51	0.80	0.64
56.06	0.94	1.20	0.78
56.08	1.45	1.60	0.91
56.10	2.02	2.00	1.01
56.12	2.66	2.40	1.11
56.14	3.35	2.80	1.20
56.16	4.10	3.20	1.28
56.18	4.89	3.60	1.36
56.20	5.72	4.00	1.43
56.22	6.60	4.40	1.50
56.24	7.52	4.80	1.57
56.26	8.48	5.20	1.63
56.28	9.48	5.60	1.69

, Inc - 2020
MacBroom
one &
ght Mild
Sopvri

343 CLINTONVILLE ROAD NORTH HAVEN, CONNECTICUT

DRAWN 1"=80'

ATTACHMENT D WATER QUALITY COMPUTATIONS

STORMWATER QUALITY CALCULATIONS: Water Quality Volume

Basin	Total	Impervious	Percent	Volumetric	WQV	Total Volume	Total Volume
ID	Area (ac.)	Area (ac.)	Impervious	Runoff Coeff., R	(ac-ft)	Required (ac-ft)	Provided (ac-ft)
DET 210	5.020	2.984	59%	0.58	0.245	0.245	0.254

$$WQV = \frac{(1.0 \text{ inches}) \text{ x A x R}}{12}$$

Where: WQV = Water Quality Volume in acre-feet

A = Contributing Area in acres

R = 0.05 + 0.009 (I)

I = Site Imperviousness as percent

STORMWATER QUALITY CALCULATIONS Total Storage Volume Provided

Elevation (ft)	Surface Area (ft2)	Volume (ft3)	Volume (ac-ft)	Cumulative Volume (ac-ft)
56.0	4,392	0.0	0.000	0.000
57.0	5,850	5,121.0	0.118	0.118
57.9	7,384	5,955.3	0.137	0.254

Detention Basin 110:

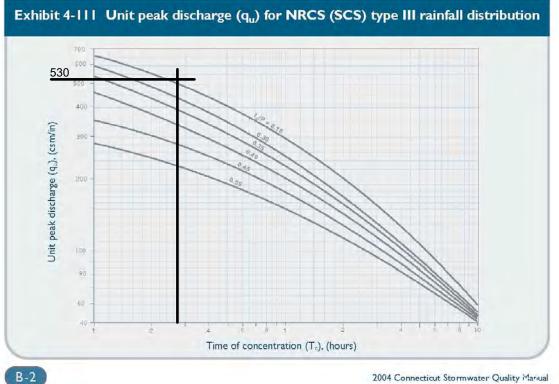
The following depicts sizing for the proposed stormwater treatment device (Contech CDS Unit) used to remove total suspended solids and other pollutants prior to discharge into the detention basin. Computations and supportive documentation have been included within the Engineering Report.

CDS Unit (MH 2)

WQF = 2.31 cubic feet per second, cfs

Model: CDS2025-5 (5' MH Diameter)

	MILONE	E AND M	ACBRO	OM, INC.			Project	2709-13
	COMPU	TATION	SHEET				Made By:	KVN
Subject:	D	roposed F	Iderly Hou	ising Deve	lonmon	t	Date:	12/8/2020
-		•	•	•	-		Chkd by:	
	34	43 Clinton	ville Road	l, North Ha	iven, Cl		Date:	
MH 2 (CDS I	<u>JNIT)</u>							
	Wooded	Grass	Imperv.					
Contributing	Area	Area	Area	Total Area				
Basins	(acres)	(acres)	(acres)	(acres)				
Total	0.2	1.35	2.86	4.37				
Table 4.1: W	$QV = (P)(R_v$)(A)/12 =		0.233	acre-feet	t		
Where:								
I = % of Impe	ervious Cove	er =		65%				
$R_v = volumet$	ric runoff co	eff. 0.05 + 0.	009(I) =	0.639				
P = design p	recipitation (1.0" for wate	r quality sto	rm) =	1	inch		
A = site area					acres =	0.0068	miles ²	
Q = runoff de	pth (in wate	rshed inches	s) = [WQV(a	crefeet)]*[12	(inches/fo	oot)]/draina	ge area (acr	es)
	· ·		Q =	0.639		/-		
CN = 1000 /	[10+ 5P + 10	$Q - 10(Q^2 +$	1.25QP) ^{0.5}]	=	96			
Where:	-							
Q = runoff de	epth (in wate	rshed inches	5)					
			t _c =	0.278	hours			
Type III Rain	fall Distributi	on:		1				
From Table 4		0.083		la/P =	0.083			
(TR-	1							
From Exhibit	/	530	csm/in.					
(TR-								
WQF = (qu)(2.31	cfs					



- 2. Compute the time of concentration (tc) based on the methods described in Chapter 3 of TR-55. A minimum value of 0.167 hours (10 minutes) should be used. For sheet flow, the flow path should not be longer than 300 feet.
- Using the computed CN, t_c , and drainage area (A) in acres, compute the peak discharge for the 3. water quality storm (i.e., the water quality flow [WQF]), based on the procedures described in Chapter 4 of TR-55.

Read initial abstraction (Ia) from Table 4-1 in Chapter 4 of TR-55 (reproduced below); 0 compute I_a/P

Curve number	l _a (in)	Curve number	l _a (in)	Curve number	l _a (in)	Curve number	l _a (in)
40		55		70		85	
41	2.878	56		71		86	
42	2.762	57	1.509	72		.87	
43	2.651	58	1,448	73	0.740	88	0.27
44		59	1.390	74	0.703	89	
45		60	1.333	75	. 0.667	90	0.22
46		61	Low states	76	0.632	91	
47		62	1.226	77		92	
48		63		78		93	
49		64	Vide.	79		94	
50		65	1.0.777	80		95	
51	1.000	66	1.030	81		96	
52	1010	67		82		97	
53	1.000	68	0.00.00	83		98	and the second second
54	and the second se	69		84			The second second

0 Read the unit peak discharge (q_u) from Exhibit 4-III in Chapter 4 of TR-55 (reproduced below) for appropriate t_c

Product Flow Rates

Model	Treatment Rate (cfs)	Sediment Capacity (CF)
CS-4	2.00	19
CS-5	3.50	29
CS-6	5.60	42
CS-8	12.00	75
CS-10	18.00	118

Model	Treatment Rate ²	Sediment Capacity
	(cfs)	(CF)
1515-3	1.00	14
2015-4	1.40	25
2015-5	1.40	39
2015-6	1.40	57
2020-5	2.20	39
2020-6	2.20	57
2025-5	3.20	39
2025-6	3.20	57
3020-6	3.90	57
3025-6	5.00	57
3030-6	5.70	57
3035-6	6.50	57
4030-8	7.50	151
4040-8	9.50	151

Model	Treatment Rate	Sediment Capacity ³
	(cfs)	(CF)
1000	1.60	16
2000	2.80	32
3000	4.50	49
4000	6.00	65
5000	8.50	86
7000	11.00	108
9000	14.00	130
11000	17.5	151
16000	25	192

STORMCEPTOR STC

Model	Treatment Rate (cfs)	Sediment Capacity ¹ (CF)
STC 450i	0.40	46
STC 900	0.89	89
STC 2400	1.58	205
STC 4800	2.47	543
STC 7200	3.56	839
STC 11000	4.94	1086
STC 16000	7.12	1677

1 Additional sediment storage capacity available - Check with your local representative for information.

2 Treatment Capacity is based on laboratory testing using OK-110 (average D50 particle size of approximately 100 microns) and a 2400 micron screen.

3 Maintenance recommended when sediment depth has accumulated to within 12-18 inches of the dry weather water surface elevation.

STORMWATER SOLUTIONS

NOTHING IN THIS CATALOG SHOULD BE CONSTRUED AS A WARRANTY, APPLICATIONS SUGGESTED HEREIN ARE DESCRIBED ONLY TO HELP READERS MAKE THEIR OWN EVALUATIONS AND DECISIONS, AND ARE NEITHER GUARANTES NOR WARRANTIES OF SUITABILITY FOR ANY APPLICATION. CONTECH MAKES NO WARRANTY WHATSOEVER, EXPRESS OR IMPLIED, RELATED TO THE APPLICATIONS, MATERIALS, COATINGS, OR PRODUCTS DISCUSSED HEREIN. ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND ALL IMPLIED WARRANTIES OF FITNESS FOR ANY PARTICULARPURPOSE ARE DISCLAIMBED BY CONTECH-SE CONTECHS CONDITIONS OF SALE (AVAILABLE AT WWW.CONTECHES.COM/COS) FOR MORE INFORMATION.

© 2019 Contech Engineered Solutions LLC, a QUIKRETE Company Revision 10/19

All Rights Reserved. Printed in the USA.)

gfield Providence Jaunton Bay Fall River Hyannis Hartford Warwick New Bedford Newport Martha's VINEYARD

The experts you need to solve your stormwater challenges

Contech is the leader in stormwater solutions, helping engineers, contractors and owners with infrastructure and land development projects throughout North America.

With our responsive team of stormwater experts, local regulatory expertise and flexible solutions, Contech is the trusted partner you can count on for stormwater management solutions.

Your Contech Team

STORMWATER CONSULTANT

It's my job to recommend the best solution to meet permitting requirements.

STORMWATER DESIGN ENGINEER

I work with consultants to design the best approved solution to meet your project's needs.

REGULATORY MANAGER

I understand the local stormwater regulations and what solutions will be approved.

SALES ENGINEER

I make sure our solutions meet the needs of the contractor during construction.

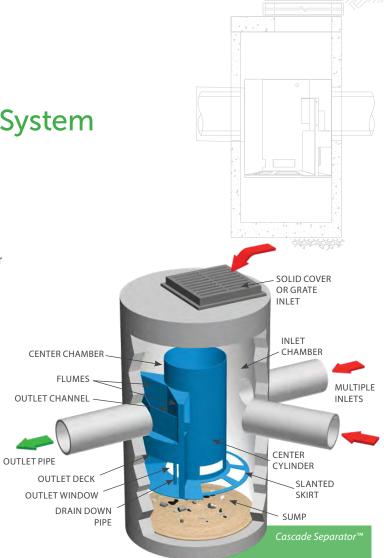
Contech is your partner in stormwater management solutions

Removing Pollutants using Hydrodynamic Separation

HDS systems play a vital role in protecting our waterways by removing high levels of sediment, trash, debris, and hydrocarbons from stormwater runoff.

Frequently used as end-of-pipe solutions, they are also used to provide stormwater quality treatment in places where space is limited.

HDS systems capture and retain a variety of stormwater pollutants and are very easy to maintain. These two key benefits have resulted in new uses for HDS technologies, such as pretreating detention, Low Impact Development, and green infrastructure practices, as well as other land-based stormwater treatment systems. Utilize high-performance hydrodynamic separation to effectively remove finer sediment, oil and grease, and floating and sinking debris.



The Cascade Separator[™] System

Advanced Sediment Capture Technology ...

The Cascade Separator[™] is the newest innovation in stormwater treatment from Contech. The Cascade Separator was developed by Contech's stormwater experts using advanced modeling tools and Contech's industry leading stormwater laboratory.

This innovative hydrodynamic separator excels at sediment capture and retention while also removing hydrocarbons, trash, and debris from stormwater runoff. What makes the Cascade Separator unique is the use of opposing vortices that enhance particle settling and a unique skirt design that allows for sediment transport into the sump while reducing turbulence and resuspension of previously captured material. These two factors allow the Cascade Separator to treat high flow rates in a small footprint, resulting in an efficient and economical solution for any site.

FEATURE	BENEFIT
Unique skirt design & opposing vortices	Superior TSS removal; reduced system size and costs
Inlet area accepts wide range of inlet pipe angles	Design and installation flexibility
Accepts multiple inlet pipes	Eliminates the need for separate junction structure
Grate inlet option	Eliminates the need for a separate grate inlet structure
Internal bypass	Eliminates the need for a separate bypass structure
Clear access to sump and stored pollutants	Fast, easy maintenance

Learn More: www.ContechES.com/cascade

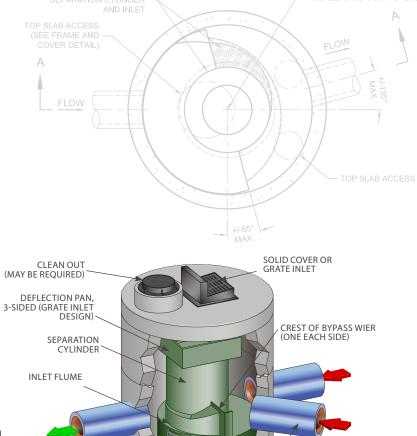
SELECT CASCADE APPROVALS

New Jersey Department of Environmental
 Protection Certification (NJDEP)

CASCADE MAINTENANCE

Cascade provides unobstructed access to stored pollutants, making it easy to maintain using a vacuum truck, with no requirement to enter the unit.

Setting new standards in Stormwater Treatment


The CDS® System

Superior TSS and Trash Removal ...

The CDS is a hybrid technology that uses a combination of swirl concentration and indirect screening to separate and trap sediment, trash, debris, and hydrocarbons from stormwater runoff.

At the heart of the CDS system is a unique screening technology used to capture and retain sediment. The screen face is louvered so that it is smooth in the downstream direction. The effect created is called "Continuous Deflective Separation." The power of the incoming flow is harnessed to continually shear debris off the screen and to direct trash and sediment toward the center of the separation cylinder. This results in a screen that is self-cleaning and provides 100% removal of floatables and neutrally buoyant material debris 2.4 mm or larger, without blinding.

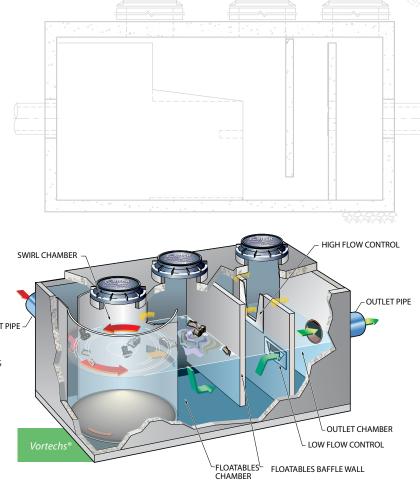
FEATURE	BENEFIT
Unique flow path and isolated storage sump	Excellent TSS capture and retention
Captures and retains 100% of floatables and neutrally buoyant debris 2.4 MM or larger	Superior trash removal
Self-cleaning screen	Ease of maintenance
Inline, offline, multiple inlet pipes, grate inlet, and drop inlet configurations available	Design flexibility
Internal bypass	Eliminates the need for additional structures
Clear access to sump and stored pollutants	Fast, easy maintenance

e and Learn More: www.ContechES.com/cds SELECT CDS APPROVALS • Washington Department of Ecology (GULD)

- Pretreatment
- New Jersey Department of Environmental
 Protection Certification (NJDEP)
- Canadian Environmental Technology
 Verification (ETV)
- MASTEP
- Connecticut DOT

The CDS system has been accepted and used extensively in all New England states for over 20 years with thousands of installations.

The Vortechs® System


Stormwater Treatment in a Shallow Footprint

Vortechs combines swirl concentration and flow controls into a single treatment unit that captures and retains trash, debris, sediment, and hydrocarbons from stormwater runoff.

The Vortechs system's large swirl chamber and flow controls work together to create a low energy environment, ideal for capturing and retaining particles down to 50 microns.

Vortechs is the ideal solution for sites with high groundwater, bedrock, utility conflicts, or sites with a large volume runoff.

The Vortechs System is approved by the Washington Department of Ecology (GULD) - Pretreatment.

Learn More: www.ContechES.com/vortechs

SELECT VORTECHS APPROVALS

- Washington Department of Ecology (GULD) – Pretreatment
- MASTEP
- Connecticut DOT

FEATURE	BENEFIT
Large swirl chamber	Fine particle removal down to 50 microns
Shallow profile – Typical depth below pipe invert is only 3 feet.	Can be used on sites with high groundwater, bedrock, or utility conflicts
Unobstructed access to stored pollutants	Fast, easy maintenance

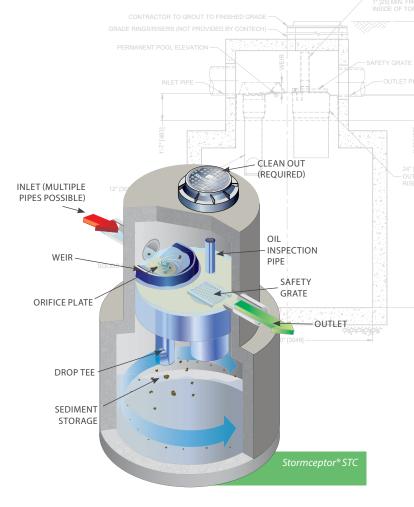
The Vortechs System was developed in New England and has been used extensively in the region for over 20 years.

The ideal solution for sites with high groundwater

Stormceptor® STC

Stormceptor STC is the recognized leader in stormwater treatment, offering a range of versatile treatment systems that effectively remove pollutants from stormwater and snowmelt runoff. Stormceptor is flexibly designed to protect waterways from hazardous material spills and stormwater pollution, including suspended sediment, free oils, and other pollutants that attach to particles, no matter how fierce the storm.

Stormceptor's scour prevention technology ensures pollutants are captured and contained during all rainfall events.


Ideal uses

- Sediment (TSS) removal
- Spill control
- Debris and small floatables capture
- Pretreatment for filtration, detention/retention systems, ponds, wetlands, Low Impact Development (LID), green infrastructure, and water-sensitive urban design

Proven performance

With more than 20 years of industry experience, Stormceptor has been performance tested and verified by some of the most stringent technology evaluation programs in North America.

- NJCAT
- Washington Ecology to Washington Department of Ecology (GULD) – Pretreatment
- EN858 Class 2

Learn More: www.ContechES.com/stormceptor

BENEFIT
Superior pollutant removal and retention
Eliminates the need for additional structures
Site flexibility
Design flexibility
Eliminates the need for a separate bypass structure

With over 40,000 units operating worldwide, Stormceptor performs and protects every day, in every storm.

Product Flow Rates

CASCADE		
Model	Treatment Rate	Sediment Capacity ¹
woder	(cfs)	(CF)
CS-4	2.00	19
CS-5	3.50	29
CS-6	5.60	42
CS-8	12.00	75
CS-10	18.00	118

Treatment Rate²

(cfs)

1.00

1.40

1.40

1.40

2.20

2.20

3.20

3.20

3.90

5.00

5.70

6.50

7.50

9.50

VORTECHS		
Madal	Treatment Rate	Sediment Capacity ³
Model	(cfs)	(CF)
1000	1.60	16
2000	2.80	32
3000	4.50	49
4000	6.00	65
5000	8.50	86
7000	11.00	108
9000	14.00	130
11000	17.5	151
16000	25	192

STORMCEPTOR STC

Model	Treatment Rate (cfs)	Sediment Capacity ¹ (CF)
STC 450i	0.40	46
STC 900	0.89	89
STC 2400	1.58	205
STC 4800	2.47	543
STC 7200	3.56	839
STC 11000	4.94	1086
STC 16000	7.12	1677

1 Additional sediment storage capacity available – Check with your local representative for information.

2 Treatment Capacity is based on laboratory testing using OK-110 (average D50 particle size of approximately 100 microns) and a 2400 micron screen.

3 Maintenance recommended when sediment depth has accumulated to within 12-18 inches of the dry weather water surface elevation.

Sediment Capacity¹

(CF)

14

25

39

57

39

57

39

57

57

57

57

57

151

151

CDS

Model

1515-3

2015-4

2015-5

2015-6

2020-5

2020-6

2025-5

2025-6

3020-6

3025-6

3030-6

3035-6

4030-8

4040-8

STORMWATER SOLUTIONS

NOTHING IN THIS CATALOG SHOULD BE CONSTRUED AS A WARRANTY. APPLICATIONS SUGGESTED HEREIN ARE DESCRIBED ONLY TO HELP READERS MAKE THEIR OWN EVALUATIONS AND DECISIONS, AND ARE NEITHER GUARANTEES NOR WARRANTIES OF SUITABILITY FOR ANY APPLICATION. CONTECH MAKES NO WARRANTY WHATSOEVER, EXPRESS OR IMPLIED, RELATED TO THE APPLICATIONS, MATERIALS, COATINGS, OR PRODUCTS DISCUSSED HEREIN. ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND ALL IMPLIED WARRANTIES OF FITNESS FOR ANY PARTICULAR PURPOSE ARE DISCLAIMED BY CONTECH. SEE CONTECH'S CONDITIONS OF SALE (AVAILABLE AT WWW.CONTECHES.COM/COS) FOR MORE INFORMATION.

Get social with us:

ATTACHMENT E

HYDROLOGIC ANALYSIS – INPUT COMPUTATIONS

Precipitation Frequency Data Server

NOAA Atlas 14, Volume 10, Version 3 Location name: North Haven, Connecticut, USA* Latitude: 41.3925°, Longitude: -72.8368° Elevation: 70.55 ft** * source: ESRI Maps ** source: USGS

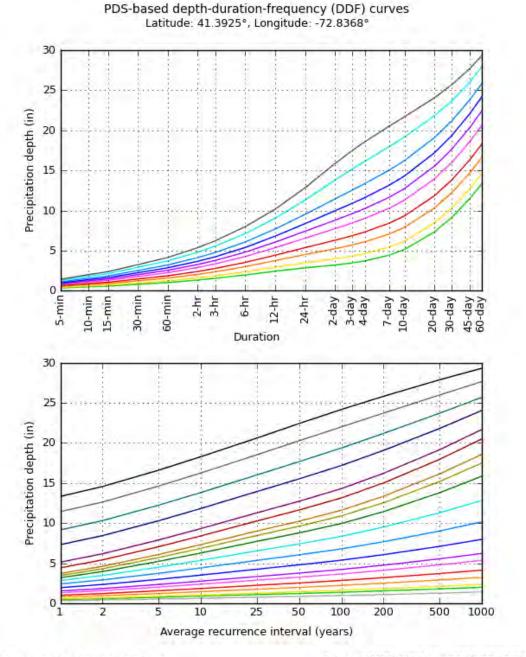
POINT PRECIPITATION FREQUENCY ESTIMATES

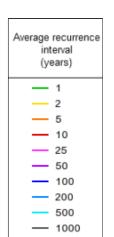
Sanja Perica, Sandra Pavlovic, Michael St. Laurent, Carl Trypaluk, Dale Unruh, Orlan Wilhite

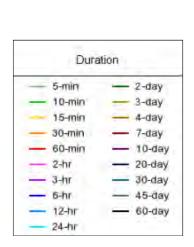
NOAA, National Weather Service, Silver Spring, Maryland

PF_tabular | PF_graphical | Maps_&_aerials

PF tabular


PDS-I	PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches) ¹									
Duration				Average I	recurrence	interval (y	ears)			
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	0.343 (0.269-0.426)	0.415 (0.325-0.517)	0.534 (0.416-0.665)	0.632 (0.490-0.794)	0.768 (0.576-1.01)	0.869 (0.639-1.17)	0.976 (0.696-1.37)	1.10 (0.739-1.57)	1.27 (0.824-1.89)	1.42 (0.896-2.15)
10-min	0.486 (0.380-0.603)	0.588 (0.460-0.732)	0.756 (0.590-0.943)	0.895 (0.693-1.12)	1.09 (0.816-1.43)	1.23 (0.904-1.66)	1.38 (0.987-1.94)	1.56 (1.05-2.23)	1.80 (1.17-2.68)	2.01 (1.27-3.04)
15-min	0.571 (0.448-0.710)	0.692 (0.542-0.861)	0.890 (0.694-1.11)	1.05 (0.817-1.32)	1.28 (0.960-1.68)	1.45 (1.07-1.95)	1.63 (1.16-2.28)	1.83 (1.23-2.62)	2.12 (1.38-3.15)	2.36 (1.49-3.58)
30-min	0.792 (0.620-0.984)	0.958 (0.749-1.19)	1.23 (0.958-1.53)	1.45 (1.13-1.83)	1.76 (1.32-2.32)	2.00 (1.47-2.69)	2.24 (1.60-3.14)	2.52 (1.70-3.61)	2.92 (1.89-4.34)	3.25 (2.06-4.93)
60-min	1.01 (0.793-1.26)	1.22 (0.957-1.52)	1.57 (1.22-1.96)	1.85 (1.44-2.33)	2.25 (1.69-2.96)	2.54 (1.87-3.42)	2.85 (2.04-4.00)	3.21 (2.16-4.59)	3.72 (2.41-5.52)	4.14 (2.62-6.28)
2-hr	1.33 (1.05-1.64)	1.60 (1.26-1.97)	2.03 (1.60-2.52)	2.40 (1.87-2.99)	2.89 (2.19-3.79)	3.27 (2.42-4.37)	3.66 (2.63-5.11)	4.12 (2.79-5.87)	4.80 (3.12-7.08)	5.36 (3.40-8.08)
3-hr	1.54 (1.22-1.90)	1.85 (1.47-2.28)	2.35 (1.86-2.90)	2.77 (2.17-3.44)	3.34 (2.54-4.36)	3.77 (2.80-5.03)	4.23 (3.05-5.88)	4.76 (3.23-6.75)	5.56 (3.62-8.17)	6.22 (3.96-9.34)
6-hr	1.96 (1.57-2.39)	2.35 (1.88-2.87)	2.99 (2.38-3.67)	3.52 (2.78-4.35)	4.26 (3.25-5.51)	4.80 (3.59-6.37)	5.38 (3.91-7.45)	6.07 (4.14-8.55)	7.11 (4.65-10.4)	7.98 (5.09-11.9)
12-hr	2.42 (1.95-2.94)	2.93 (2.35-3.55)	3.74 (3.00-4.56)	4.42 (3.52-5.42)	5.36 (4.12-6.90)	6.05 (4.56-7.98)	6.80 (4.97-9.35)	7.69 (5.26-10.8)	9.02 (5.92-13.1)	10.2 (6.50-15.0)
24-hr	2.85 (2.31-3.42)	3.48 (2.82-4.19)	4.51 (3.64-5.45)	5.36 (4.30-6.52)	6.54 (5.07-8.38)	7.41 (5.63-9.74)	8.36 (6.17-11.5)	9.52 (6.54-13.2)	11.3 (7.43-16.3)	12.8 (8.23-18.9)
2-day	3.19 (2.61-3.81)	3.97 (3.24-4.74)	5.23 (4.25-6.28)	6.28 (5.07-7.59)	7.73 (6.04-9.87)	8.79 (6.73-11.5)	9.96 (7.43-13.7)	11.4 (7.88-15.8)	13.8 (9.11-19.8)	15.9 (10.2-23.2)
3-day	3.46 (2.84-4.12)	4.32 (3.54-5.14)	5.71 (4.66-6.82)	6.86 (5.57-8.25)	8.46 (6.64-10.8)	9.62 (7.40-12.6)	10.9 (8.18-15.0)	12.6 (8.67-17.3)	15.2 (10.0-21.7)	17.5 (11.3-25.5)
4-day	3.72 (3.06-4.41)	4.62 (3.80-5.49)	6.10 (5.00-7.27)	7.32 (5.96-8.78)	9.01 (7.10-11.4)	10.2 (7.90-13.3)	11.6 (8.72-15.9)	13.4 (9.24-18.3)	16.1 (10.7-22.9)	18.6 (12.0-26.9)
7-day	4.43 (3.67-5.22)	5.43 (4.49-6.41)	7.06 (5.82-8.36)	8.41 (6.89-10.0)	10.3 (8.12-12.9)	11.6 (9.01-15.0)	13.1 (9.88-17.8)	15.0 (10.4-20.5)	18.0 (11.9-25.4)	20.5 (13.3-29.6)
10-day	5.14 (4.27-6.03)	6.19 (5.14-7.27)	7.90 (6.54-9.33)	9.32 (7.66-11.1)	11.3 (8.94-14.1)	12.7 (9.87-16.3)	14.3 (10.7-19.2)	16.2 (11.3-22.0)	19.2 (12.8-27.0)	21.7 (14.1-31.1)
20-day	7.32 (6.14-8.54)	8.45 (7.08-9.87)	10.3 (8.59-12.1)	11.8 (9.80-13.9)	13.9 (11.1-17.2)	15.5 (12.0-19.6)	17.2 (12.9-22.5)	19.1 (13.4-25.7)	21.8 (14.6-30.4)	24.1 (15.6-34.3)
30-day	9.15 (7.71-10.6)	10.3 (8.69-12.0)	12.2 (10.3-14.3)	13.8 (11.5-16.2)	16.0 (12.8-19.6)	17.7 (13.7-22.1)	19.4 (14.5-25.1)	21.2 (14.9-28.4)	23.7 (15.9-32.9)	25.7 (16.7-36.5)
45-day	11.4 (9.68-13.2)	12.6 (10.7-14.6)	14.6 (12.3-17.0)	16.3 (13.6-19.0)	18.5 (14.8-22.5)	20.3 (15.8-25.1)	22.0 (16.4-28.2)	23.7 (16.8-31.6)	26.0 (17.5-35.9)	27.7 (18.1-39.1)
60-day	13.3 (11.3-15.4)	14.6 (12.4-16.8)	16.6 (14.0-19.2)	18.3 (15.3-21.3)	20.6 (16.5-24.9)	22.4 (17.5-27.6)	24.2 (18.0-30.7)	25.8 (18.3-34.2)	27.9 (18.8-38.4)	29.3 (19.2-41.3)

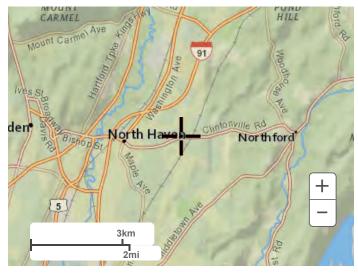

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).


Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values. Please refer to NOAA Atlas 14 document for more information.

Back to Top

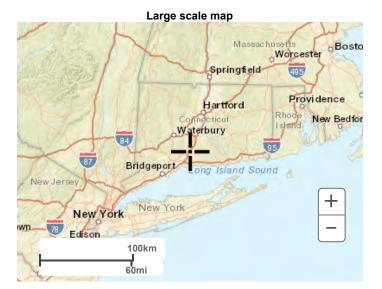
PF graphical

NOAA Atlas 14, Volume 10, Version 3

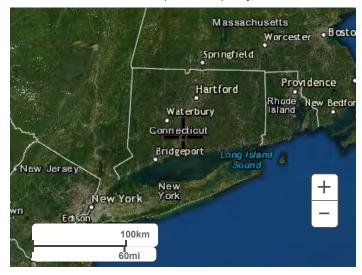

Created (GMT): Wed Aug 26 17:43:43 2020

Back to Top

Maps & aerials


Small scale terrain

Precipitation Frequency Data Server


Large scale terrain

Large scale aerial

Precipitation Frequency Data Server

Back to Top

US Department of Commerce National Oceanic and Atmospheric Administration National Weather Service National Water Center 1325 East West Highway Silver Spring, MD 20910 Questions?: <u>HDSC.Questions@noaa.gov</u>

Disclaimer

Project:	Prop. Elderly	Housing Development	By:	KVN	Date: I	Rev.12/8/2020
Location:	North Haven	, CT (MMI# 2709-13)	Checked:		Date:	
Circle one:	<u>Present</u>	Developed	Watershed:	WS 10 - Exi	sting Conditions	

Soil Name	Cover Description	C	N Value	e ^{1.}	Area	Product
and Hydrologic Group (appendix A)	(cover type, treatment, and hydrologic condition; percent impervious; unconnected/connected impervious area ratio)	Table 2-2	Figure 2-3	Figure 2-4	Acres Sq. Ft. %	of CN x Area
A	WOODS (GOOD)	30			0.247	7.42
А	OPEN SPACE (GOOD)	39			0.529	20.64
В	OPEN SPACE (GOOD)	61			0.009	0.57
А	STRAIGHT ROW CROPS (GOOD)	67			0.184	12.31
С	WOODS (GOOD)	70			0.020	1.43
А	GRAVEL	76			0.121	9.20
В	GRAVEL	85			0.007	0.55
N/A	IMPERVIOUS	98			0.198	19.36
N/A	EXISTING BUILDING	98			0.144	14.09
		5.58		als = (e CN =	1.459 0.00228 59	85.58 sq mi)

Project:	Prop. Elderly	Housing Development	By:	KVN	Date: I	Rev.12/8/2020
Location:	North Haven	, CT (MMI# 2709-13)	Checked:		Date:	
Circle one:	<u>Present</u>	Developed	Watershed:	WS 20 - Exi	sting Conditions	

Soil Name	Cover Description	С	N Valu	e ^{1.}	Area	Product
and Hydrologic Group (appendix A)	(cover type, treatment, and hydrologic condition; percent impervious; unconnected/connected impervious area ratio)	Table 2-2	Figure 2-3	Figure 2-4	Acres Sq. Ft. %	of CN x Area
A	WOODS (GOOD)	30			1.951	58.52
A	OPEN SPACE (GOOD)	39			0.898	35.03
В	OPEN SPACE (GOOD)	61			0.028	1.73
A	STRAIGHT ROW CROPS (GOOD)	67			2.364	158.39
С	WOODS (GOOD)	70			0.450	31.51
С	OPEN SPACE (GOOD)	74			0.215	15.88
А	GRAVEL	76			0.113	8.60
В	GRAVEL	85			0.009	0.79
С	GRAVEL	89			0.021	1.86
N/A	EXISTING BUILDING	98			0.027	2.69
^{1.} Use only or	e CN value source per line.		Tota	als = (6.077 0.00950	315.00 sq mi)
CN (v	veighted) =	5.00 .08	• Use	e CN =	52]

Project:	Prop. Elderly	Housing Development	By:	KVN	Date:	Rev.12/8/2020
Location:	North Haven	, CT (MMI# 2709-13)	Checked:		Date:	
Circle one:	<u>Present</u>	Developed	Watershed:	WS 30 - Exi	sting Conditions	

Soil Name	Cover Description	C	N Value	e ^{1.}	Area	Product
and Hydrologic Group (appendix A)	(cover type, treatment, and hydrologic condition; percent impervious; unconnected/connected impervious area ratio)	Table 2-2	Figure 2-3	Figure 2-4	Acres Sq. Ft. %	of CN x Area
А	WOODS (GOOD)	30			0.038	1.15
A	OPEN SPACE (GOOD)	39			0.043	1.67
^{1.} Use only on	^{1.} Use only one CN value source per line. Totals = 0 (0.					2.82 sq mi)
CN (w		.82 .08	Use	e CN =	35	

Project:	Prop. Elderly	Housing Development	By:	KVN	Date: R	ev.12/8/2020
Location:	North Haven	, CT (MMI# 2709-13)	Checked:		Date:	
Circle one:	<u>Present</u>	Developed	Watershed:	WS 40 - Exi	sting Conditions	

Soil Name	Cover Description	C	N Value	e ^{1.}	Area	Product
and Hydrologic Group (appendix A)	(cover type, treatment, and hydrologic condition; percent impervious; unconnected/connected impervious area ratio)	Table 2-2	Figure 2-3	Figure 2-4	Acres Sq. Ft. %	of CN x Area
A	WOODS (GOOD)	30			0.087	2.61
					0.087	
^{1.} Use only on	^{1.} Use only one CN value source per line. Totals =					2.61
				(0.00014	sq mi)
CN (w		.61 .09	Use	e CN =	30	

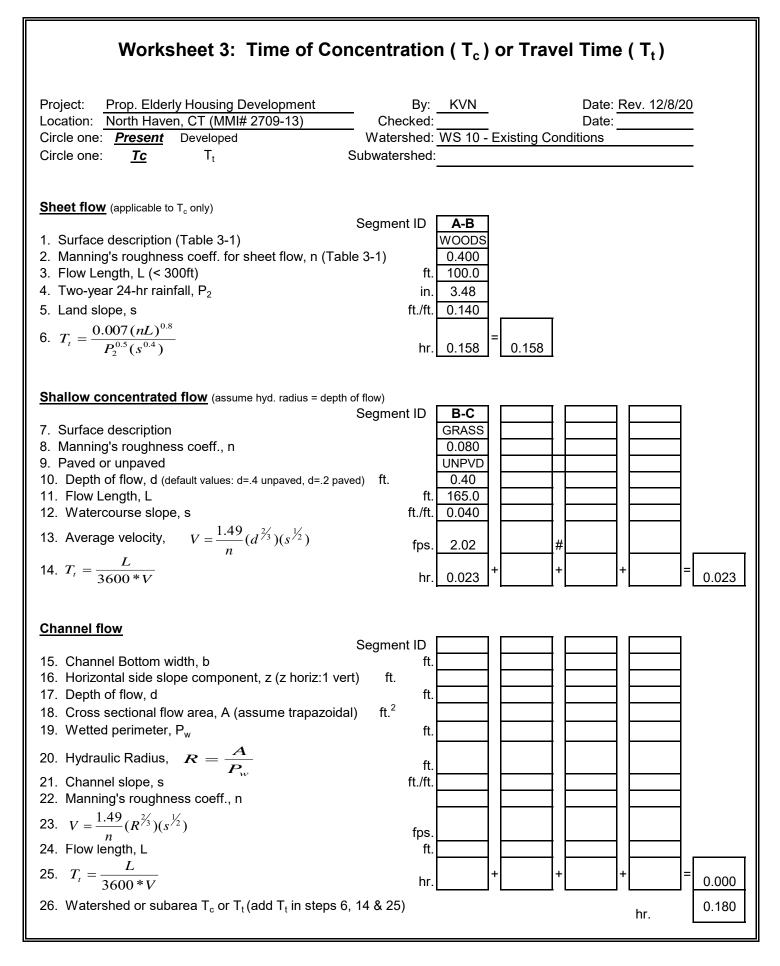
Project:	Prop. Elderly	/ Housing Development	By:	KVN	Date:	Rev.12/8/2020
Location:	North Haver	, CT (MMI# 2709-13)	Checked:		Date:	
Circle one:	Present	Developed	Watershed:	WS 10 - P	roposed Condition	IS

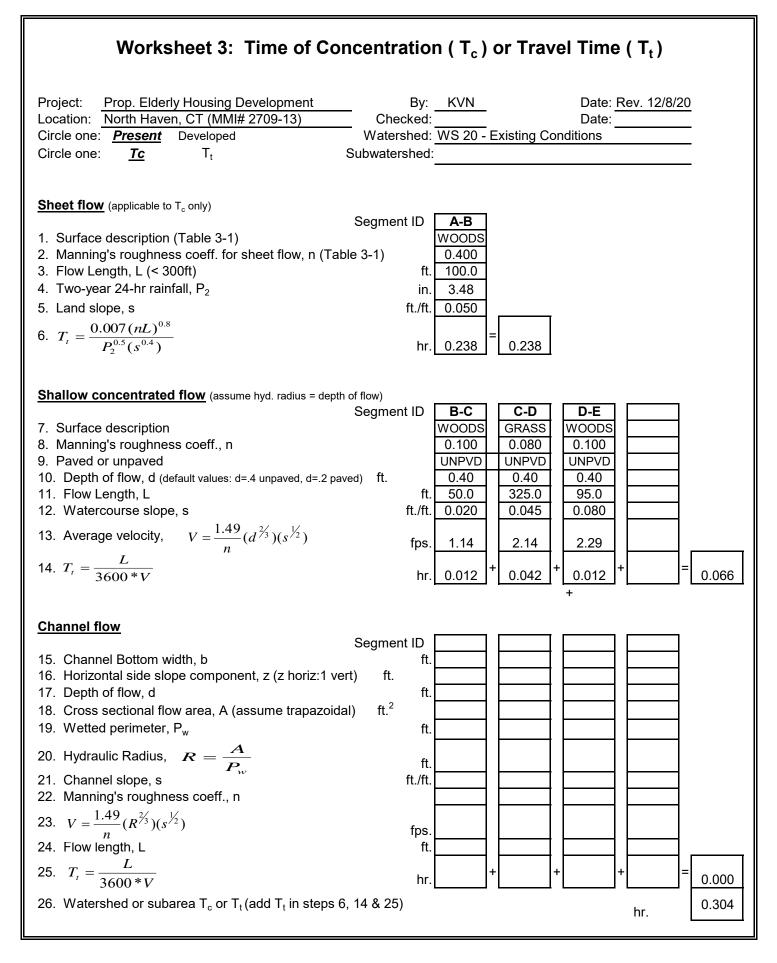
Soil Name	Cover Description	C	N Valu	e ^{1.}	Area	Product
and Hydrologic Group (appendix A)	(cover type, treatment, and hydrologic condition; percent impervious; unconnected/connected impervious area ratio)	Table 2-2	Figure 2-3	Figure 2-4	Acres Sq. Ft. %	of CN x Area
А	WOODS (GOOD)	30			0.006	0.18
А	OPEN SPACE (GOOD)	39			1.148	44.79
В	OPEN SPACE (GOOD)	61			0.021	1.31
С	WOODS (GOOD)	70			0.012	0.87
С	OPEN SPACE (GOOD)	74			0.008	0.59
N/A	IMPERVIOUS	98			0.047	4.65
^{1.} Use only or	^{1.} Use only one CN value source per line. Totals =					52.38
				(0.00194	sq mi)
CN (v	veighted) =	2.38 .24	Use	e CN =	42	

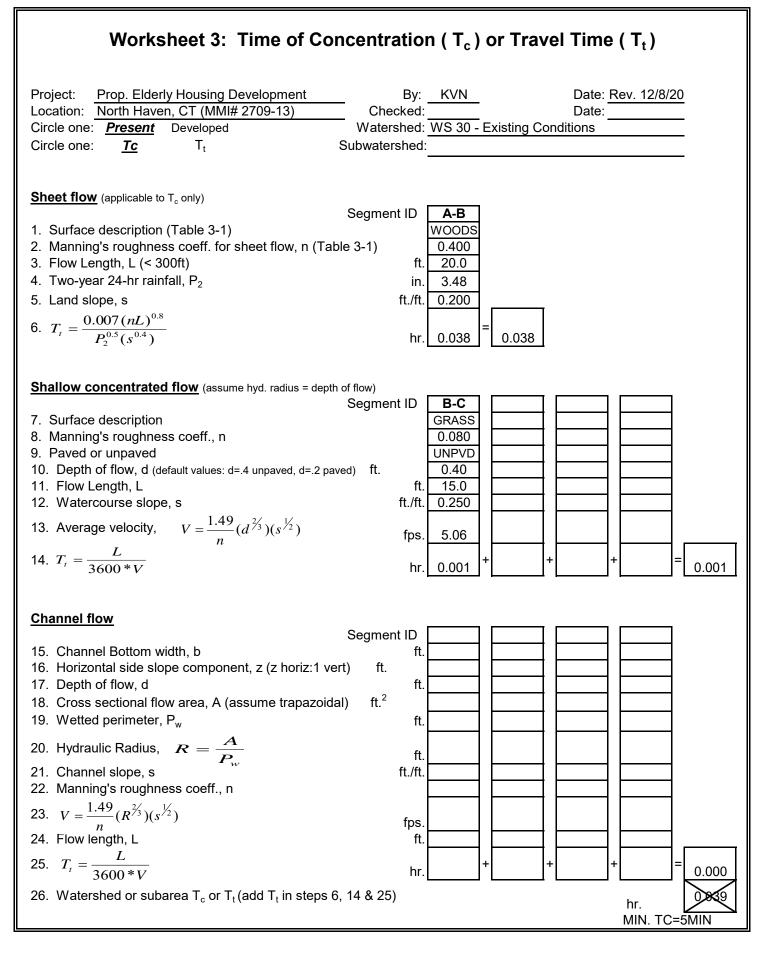
Project:	Prop. Elderly	/ Housing Development	By:	KVN	Date:	Rev.12/8/2020
Location:	North Haver	n, CT (MMI# 2709-13)	Checked:		Date:	
Circle one:	Present	<u>Developed</u>	Watershed:	WS 20 - Pro	posed Condition	s

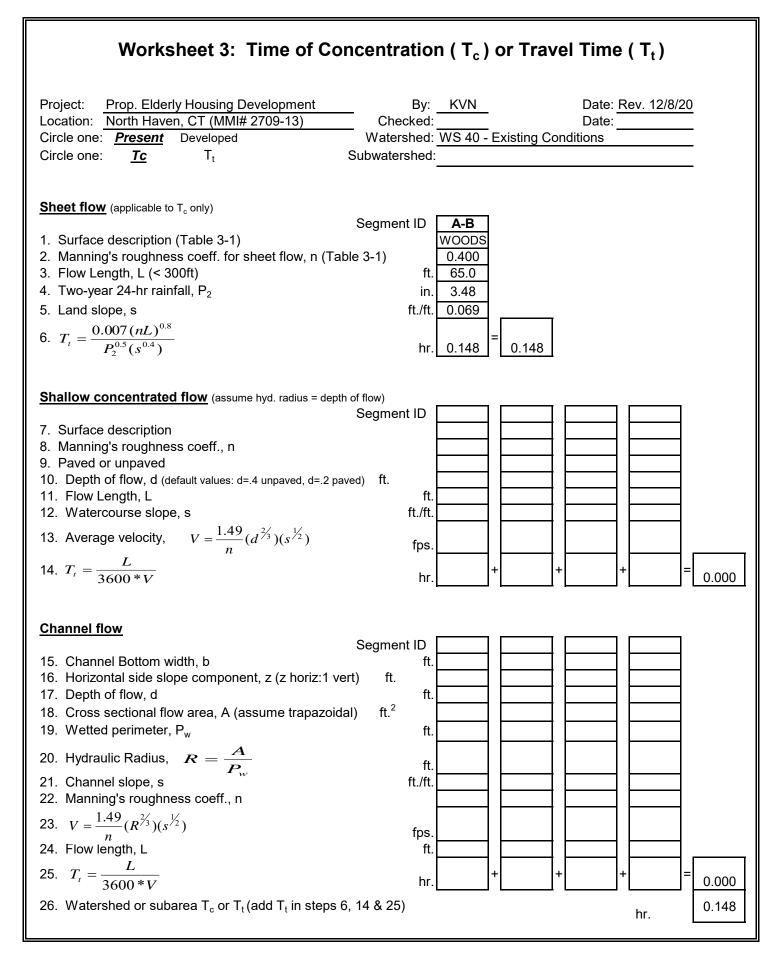
Soil Name	Cover Description	C	N Value	e ^{1.}	Area	Product
and Hydrologic Group (appendix A)	(cover type, treatment, and hydrologic condition; percent impervious; unconnected/connected impervious area ratio)	Table 2-2	Figure 2-3	Figure 2-4	Acres Sq. Ft. %	of CN x Area
А	WOODS (GOOD)	30			0.178	5.33
А	OPEN SPACE (GOOD)	39			0.459	17.91
С	WOODS (GOOD)	70			0.376	26.29
С	OPEN SPACE (GOOD)	74			0.289	21.40
С	GRAVEL	89			0.021	1.84
N/A	IMPERVIOUS	98			0.030	2.91
^{1.} Use only or	ne CN value source per line.	1.352	75.70			
				als = (0.00211	sq mi)
CN (v	$CN \text{ (weighted)} = \frac{\text{total product}}{\text{total area}} = \frac{75.70}{1.35} \text{ Use CN} = 56$					

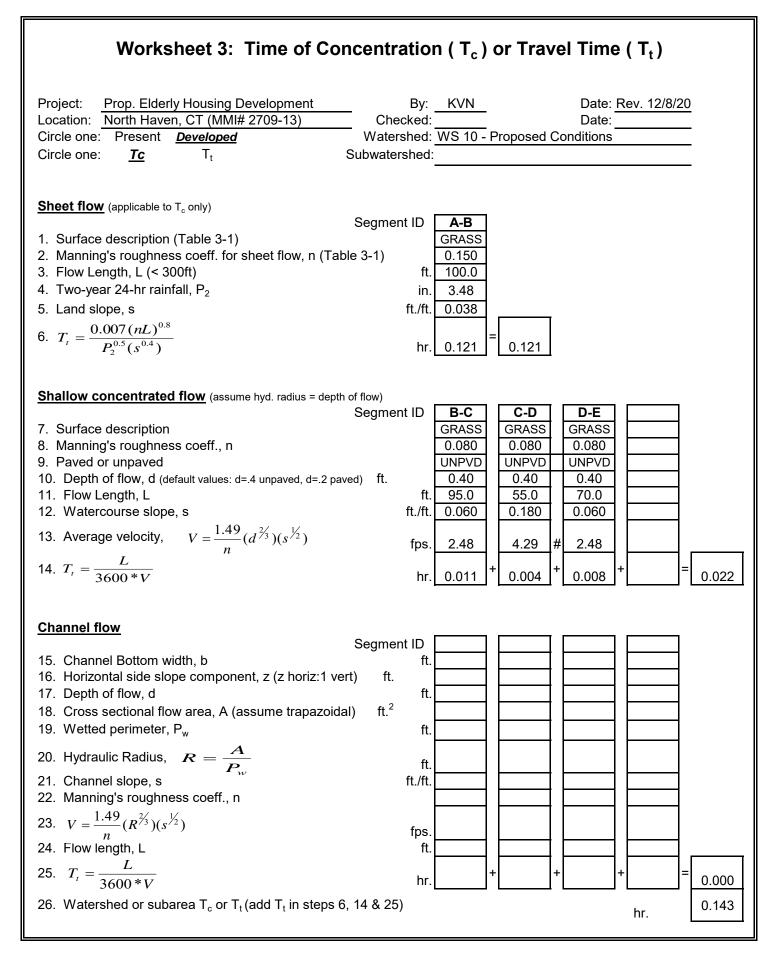
Project:	Prop. Elderly	/ Housing Development	By:	KVN	Date: Rev.12/8/2020
Location:	North Haver	n, CT (MMI# 2709-13)	Checked:		Date:
Circle one:	Present	<u>Developed</u>	Watershed:	WS 21 - Pro	oposed Conditions

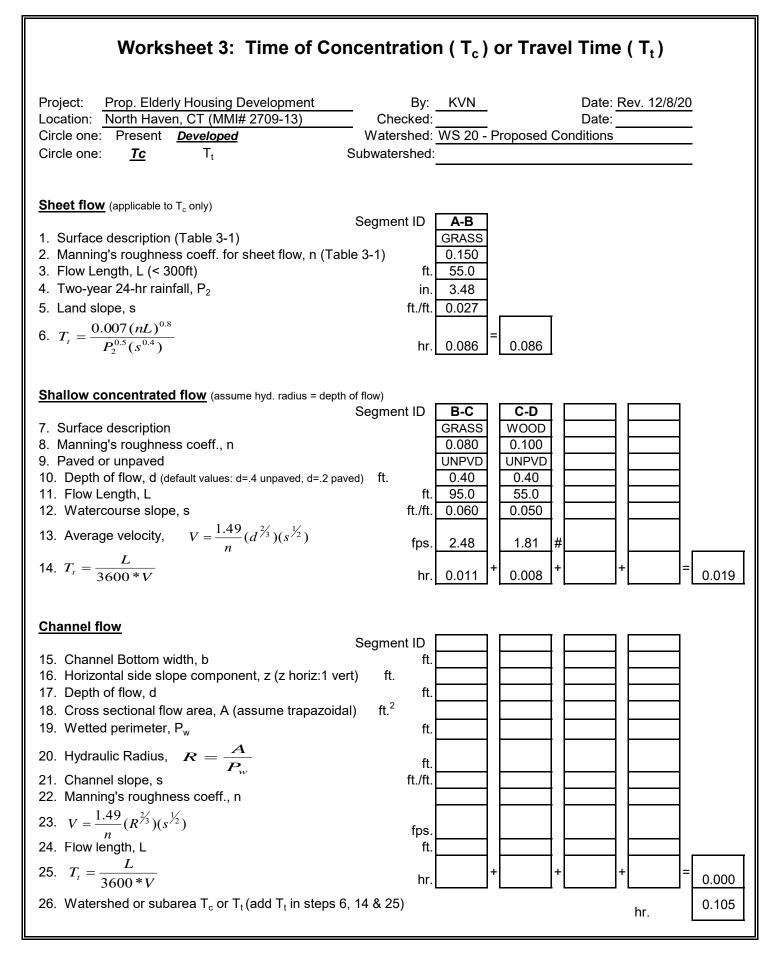

Soil Name	Cover Description	C	N Value	e ^{1.}	Area	Product
and Hydrologic Group (appendix A)	(cover type, treatment, and hydrologic condition; percent impervious; unconnected/connected impervious area ratio)	Table 2-2	Figure 2-3	Figure 2-4	Acres Sq. Ft. %	of CN x Area
А	WOODS (GOOD)	30			0.164	4.93
А	OPEN SPACE (GOOD)	39			1.847	72.03
В	OPEN SPACE (GOOD)	61			0.026	1.61
N/A	IMPERVIOUS	98			1.817	178.08
N/A	PROPOSED BUILDING	98			1.167	114.34
^{1.} Use only or	ne CN value source per line.	•	Tota	als = (5.021 0.00785	370.98 sq mi)
CN (\		0.98 .02	- Use	e CN =	74	

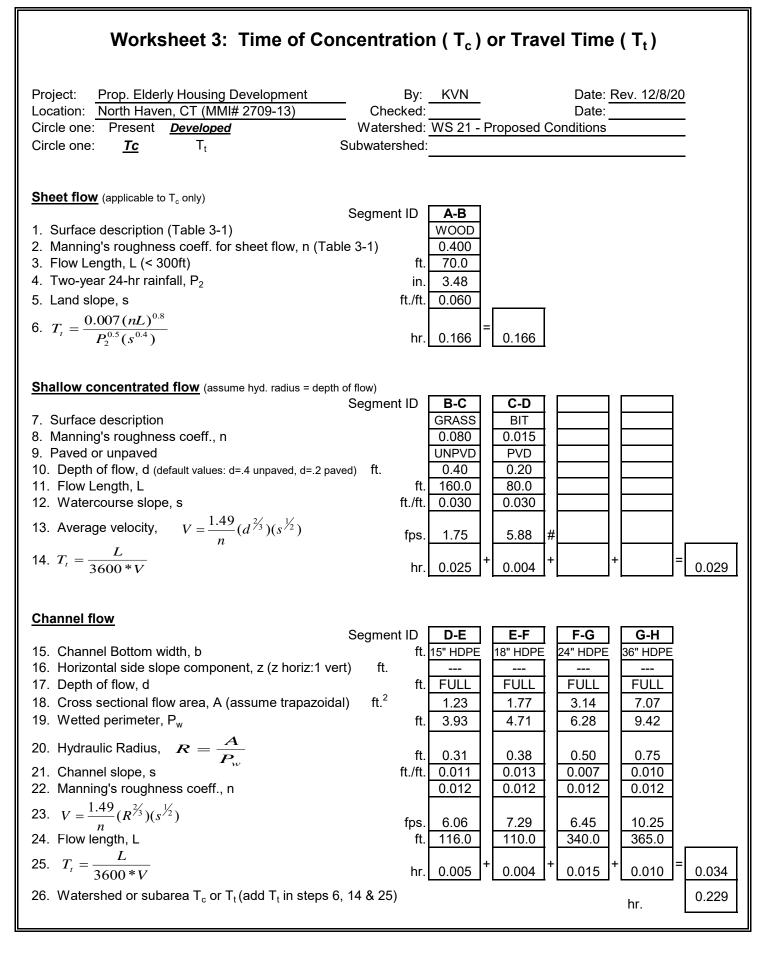

Project:	Prop. Elderly	y Housing Development	By:	KVN	Date: <u>Rev.12/8/2020</u>
Location:	North Haver	n, CT (MMI# 2709-13)	Checked:		Date:
Circle one:	Present	<u>Developed</u>	Watershed:	WS 30 - Pro	posed Conditions

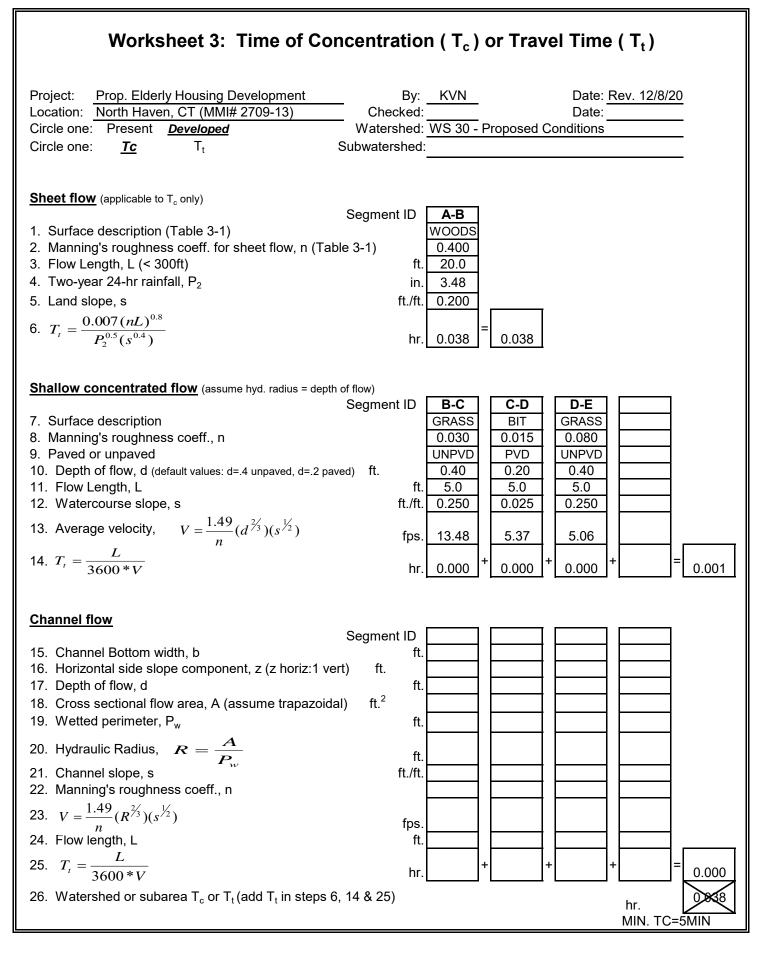

Soil Name	Cover Description	C	N Value	e ^{1.}	Area	Product
and Hydrologic Group (appendix A)	(cover type, treatment, and hydrologic condition; percent impervious; unconnected/connected impervious area ratio)	Table 2-2	Figure 2-3	Figure 2-4	Acres Sq. Ft. %	of CN x Area
A	WOODS (GOOD)	30			0.026	0.78
A	OPEN SPACE (GOOD)	39			0.037	1.44
N/A	IMPERVIOUS	98			0.018	1.78
^{1.} Use only one	e CN value source per line.	ļ	I Tota	als = (0.081 0.00013	4.00 sq mi)
CN (w		.00 .08	- Use	e CN =	49	

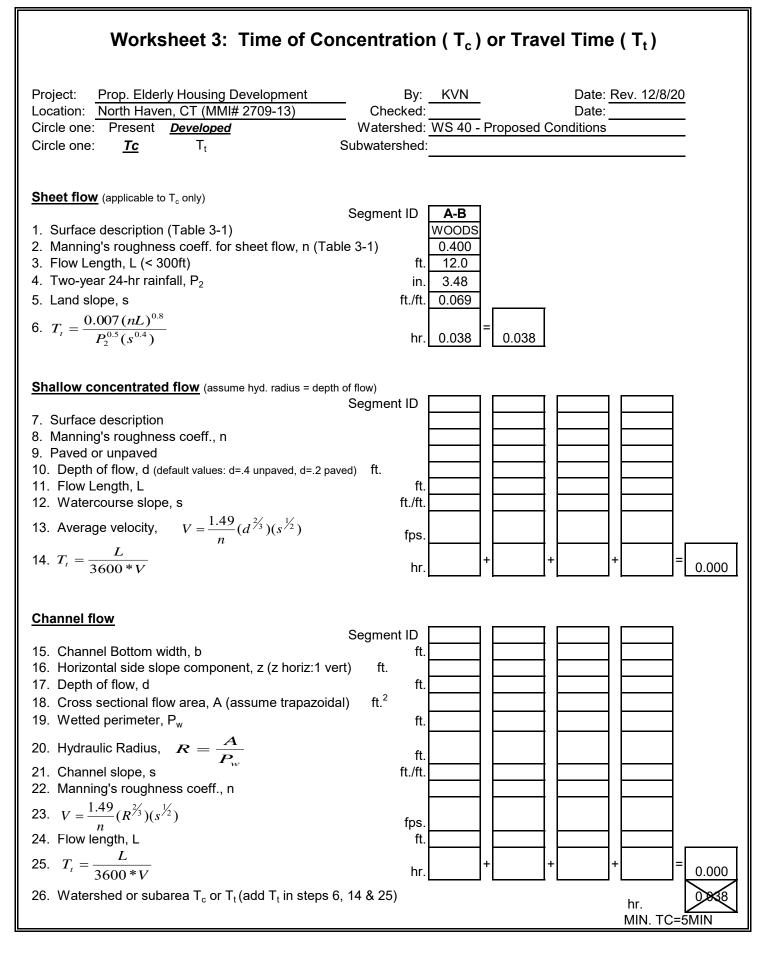

Project:	Prop. Elderly	/ Housing Development	By:	KVN	Date: <u>Rev.12/8/2020</u>
Location:	North Haver	n, CT (MMI# 2709-13)	Checked:		Date:
Circle one:	Present	Developed	Watershed:	WS 40 - Pro	posed Conditions


Soil Name	Cover Description	С	N Value	9 ^{1.}	Area	Product
and Hydrologic Group (appendix A)	(cover type, treatment, and hydrologic condition; percent impervious; unconnected/connected impervious area ratio)	Table 2-2	Figure 2-3	Figure 2-4	Acres Sq. Ft. %	of CN x Area
А	WOODS (GOOD)	30			0.042	1.27
A	OPEN SPACE (GOOD)	39			0.002	0.07
^{1.} Use only or	ne CN value source per line.	<u> </u>	Tota	als = (0.044	1.34 sq mi)
CN (\		.34 .04	Use	e CN =	30	









Pond Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Pond No. 1 - DET 210

Pond Data

Contours -User-defined contour areas. Conic method used for volume calculation. Begining Elevation = 56.00 ft

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (acft)	Total storage (acft)
0.00	56.00	4,392	0.000	0.000
1.00	57.00	5,850	0.117	0.117
1.90	57.90	7,384	0.136	0.254
2.00	58.00	7,555	0.017	0.271
3.00	59.00	10,570	0.207	0.478
4.00	60.00	12,845	0.268	0.746
5.00	61.00	15,186	0.321	1.067
6.00	62.00	17,608	0.376	1.443

Culvert / Orifice Structures

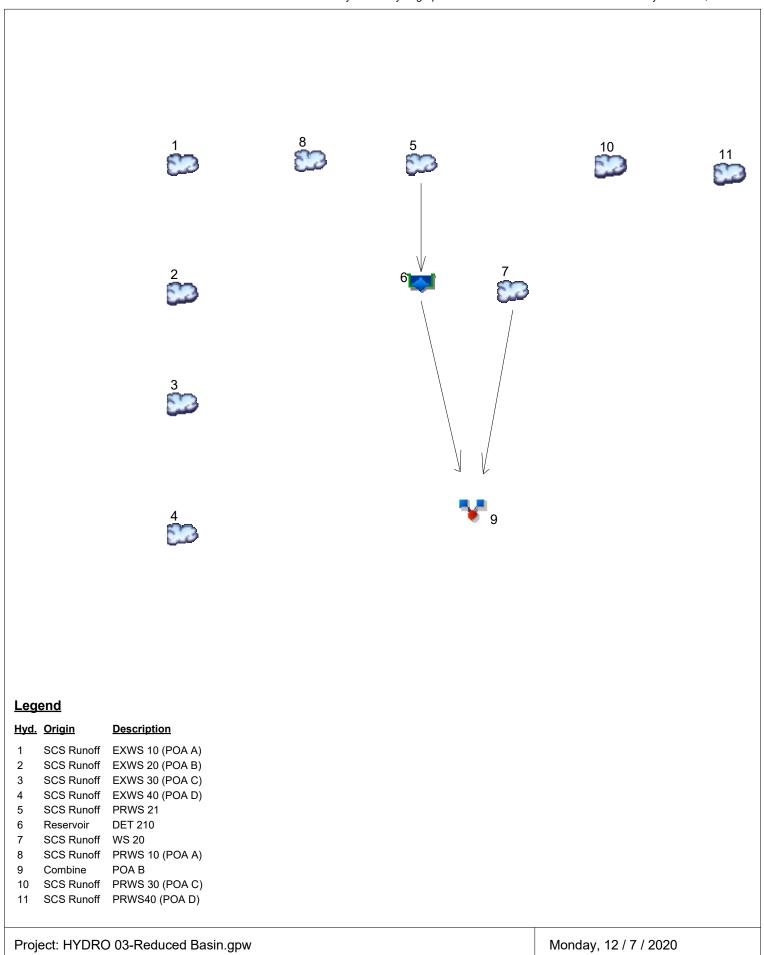
Weir Structures

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 18.00	6.00	0.00	0.00	Crest Len (ft)	= 12.51	0.00	10.00	Inactive
Span (in)	= 18.00	6.00	0.00	0.00	Crest El. (ft)	= 60.50	59.00	61.00	0.00
No. Barrels	= 1	1	0	0	Weir Coeff.	= 3.33	1.05	2.60	3.33
Invert El. (ft)	= 56.00	57.90	0.00	0.00	Weir Type	= 1	45 degV	Rect	Ciplti
Length (ft)	= 71.00	0.00	0.00	0.00	Multi-Stage	= Yes	Yes	No	No
Slope (%)	= 0.70	0.00	0.00	n/a					
N-Value	= .012	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 1.000 (by	/ Contour)		
Multi-Stage	= n/a	Yes	No	No	TW Elev. (ft)	= 0.00			

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s). Stage / Storage / Discharge Table

•	•	•											
Stage ft	Storage acft	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
0.00	0.000	56.00	0.00	0.00			0.00		0.00		0.000		0.000
1.00	0.117	57.00	0.00	0.00			0.00		0.00		0.135		0.135
1.90	0.254	57.90	0.00	0.00			0.00		0.00		0.171		0.171
2.00	0.271	58.00	0.03 ic	0.03 ic			0.00		0.00		0.175		0.206
3.00	0.478	59.00	0.88 ic	0.87 ic			0.00		0.00		0.245		1.116
4.00	0.746	60.00	2.37 ic	1.29 ic			0.00	1.05	0.00		0.297		2.635
5.00	1.067	61.00	16.92 ic	0.51 ic			13.12 s	3.29 s	0.00		0.352		17.27
6.00	1.443	62.00	19.46 ic	0.13 ic			16.59 s	2.72 s	26.00		0.408		45.85

ATTACHMENT F HYDROLOGIC ANALYSIS – COMPUTER MODEL RESULTS


Hydrographs Model Summary of Results Existing vs. Proposed

Study	2yr Storm		10yr Storm		25yr Storm		50yr Storm		100yr Storm	
Area	Ex	Pr	Ex	Pr	Ex	Pr	Ex	Pr	Ex	Pr
Α	0.43	0.01	1.74	0.19	2.79	0.59	3.64	1.04	4.61	1.62
В	0.52	0.25	3.85	1.58	7.05	3.01	9.76	4.68	12.94	10.65
С	0.00	0.00	0.00	0.04	0.01	0.09	0.02	0.13	0.04	0.18
D	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01

Study Area:	Description:
Α	Western Property Boundary
В	Existing Wetlands North of Site
С	Southeastern tract of land that drains to St. Route
D	Eastern Property Boundary

Watershed Model Schematic

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hydraflow Table of Contents

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020	Monday, 12 / 7 / 2020
Watershed Model Schematic	1
Hydrograph Return Period Recap	2
2 - Year Summary Report	3
10 - Year Summary Report	4
25 - Year Summary Report	5
50 - Year Summary Report	6
100 - Year Summary Report	

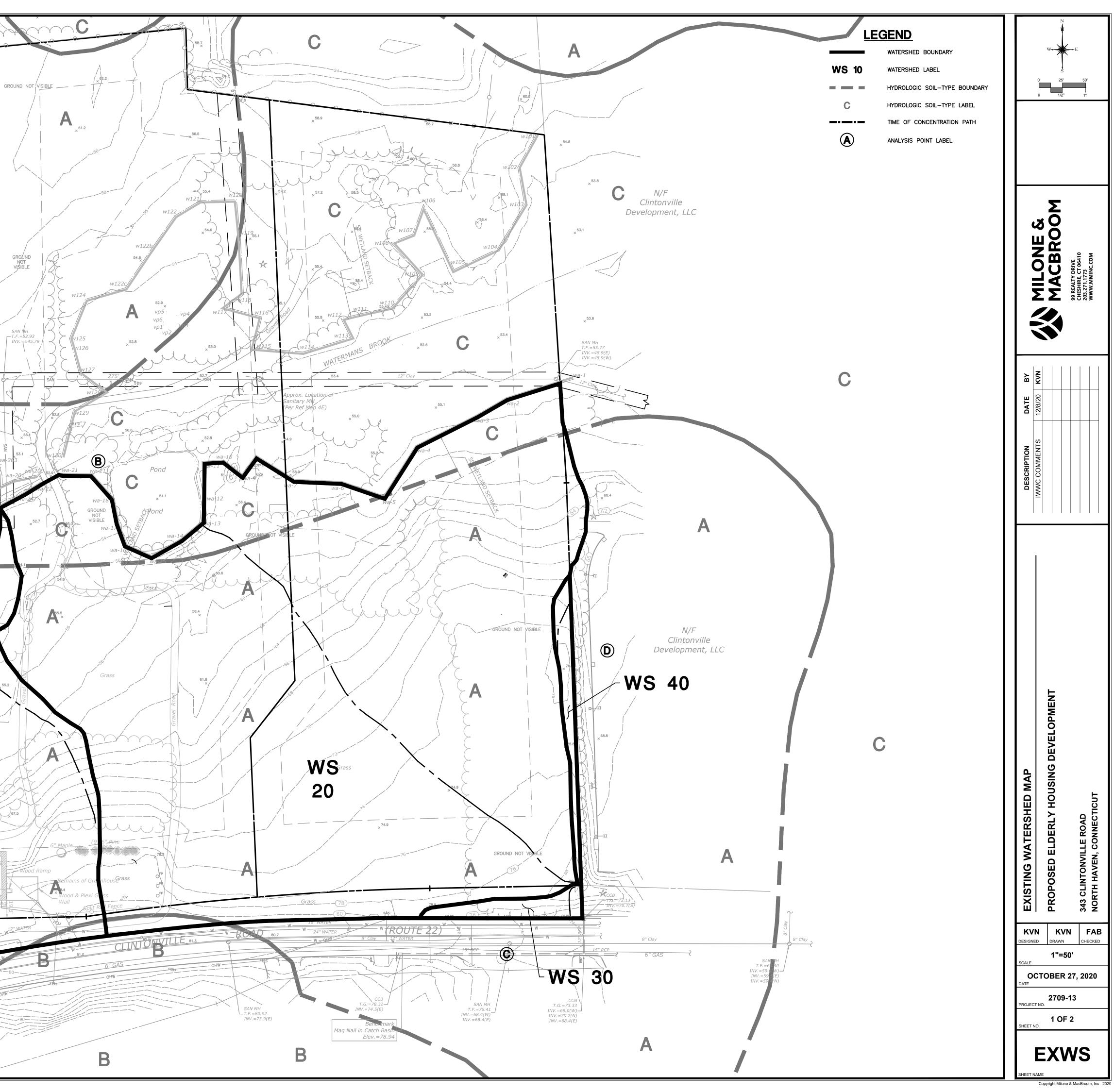
Hydrograph Return Period Recap Hydraffow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

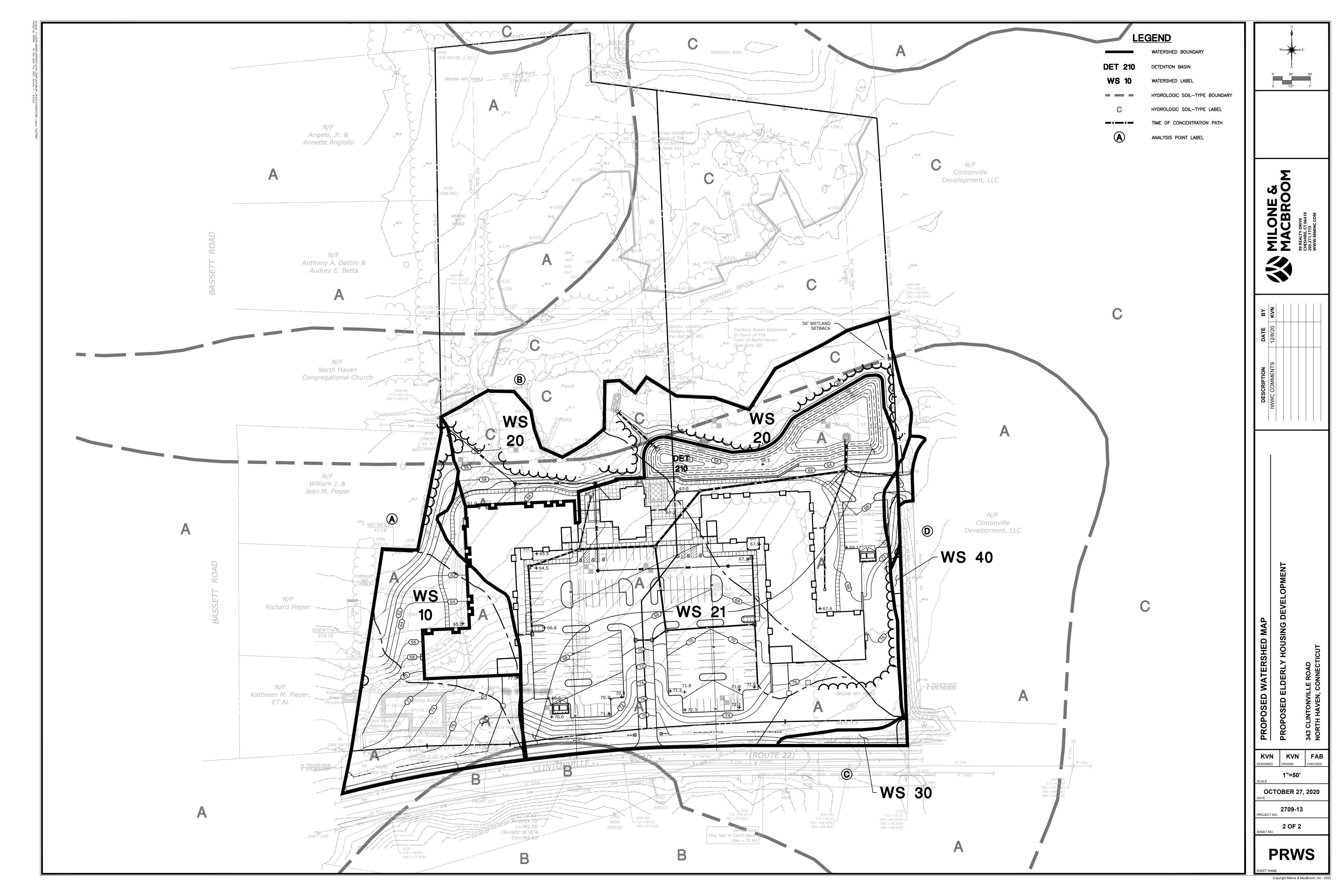
lyd. No.	Hydrograph	Inflow				Peak Out	tflow (cfs)				Hydrograph
10.	type (origin)	hyd(s)	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr	Description
1	SCS Runoff			0.427			1.741	2.790	3.637	4.610	EXWS 10 (POA A)
2	SCS Runoff			0.518			3.853	7.048	9.759	12.94	EXWS 20 (POA B)
3	SCS Runoff			0.000			0.001	0.009	0.020	0.039	EXWS 30 (POA C)
4	SCS Runoff			0.000			0.000	0.002	0.004	0.014	EXWS 40 (POA D)
5	SCS Runoff			5.426			12.26	16.89	20.39	24.25	PRWS 21
6	Reservoir	5		0.197			1.100	2.423	4.013	9.253	DET 210
7	SCS Runoff			0.252			1.464	2.477	3.297	4.245	WS 20
8	SCS Runoff			0.006			0.194	0.593	1.037	1.619	PRWS 10 (POA A)
9	Combine	6, 7,		0.252			1.579	3.011	4.683	10.65	POA B
10	SCS Runoff			0.003			0.043	0.090	0.131	0.180	PRWS 30 (POA C)
11	SCS Runoff			0.000			0.000	0.001	0.002	0.007	PRWS40 (POA D)
	j. file: HYDR										2 / 7 / 2020

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (acft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (acft)	Hydrograph Description
1	SCS Runoff	0.427	3	735	0.059				EXWS 10 (POA A)
2	SCS Runoff	0.518	3	750	0.128				EXWS 20 (POA B)
3	SCS Runoff	0.000	3	n/a	0.000				EXWS 30 (POA C)
4	SCS Runoff	0.000	3	n/a	0.000				EXWS 40 (POA D)
5	SCS Runoff	5.426	3	729	0.513				PRWS 21
6	Reservoir	0.197	3	927	0.080	5	58.17	0.306	DET 210
7	SCS Runoff	0.252	3	732	0.039				WS 20
8	SCS Runoff	0.006	3	1326	0.003				PRWS 10 (POA A)
9	Combine	0.252	3	732	0.119	6, 7,			POA B
10	SCS Runoff	0.003	3	747	0.001				PRWS 30 (POA C)
11	SCS Runoff	0.000	3	n/a	0.000				PRWS40 (POA D)
1.0.2	DRO 03-Red					Period: 2 Ye			2 / 7 / 2020

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (acft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (acft)	Hydrograph Description
1	SCS Runoff	1.741	3	732	0.176				EXWS 10 (POA A)
2	SCS Runoff	3.853	3	738	0.506				EXWS 20 (POA B)
3	SCS Runoff	0.001	3	882	0.001				EXWS 30 (POA C)
4	SCS Runoff	0.000	3	1326	0.000				EXWS 40 (POA D)
5	SCS Runoff	12.26	3	729	1.111				PRWS 21
6	Reservoir	1.100	3	804	0.572	5	59.33	0.568	DET 210
7	SCS Runoff	1.464	3	726	0.130				WS 20
8	SCS Runoff	0.194	3	741	0.040				PRWS 10 (POA A)
9	Combine	1.579	3	741	0.702	6, 7,			POA B
10	SCS Runoff	0.043	3	729	0.005				PRWS 30 (POA C)
11	SCS Runoff	0.000	3	1326	0.000				PRWS40 (POA D)
HY	DRO 03-Red	uced Bas	in.gpw		Return	Period: 10 \	/ear	Monday, 1	2 / 7 / 2020

lyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (acft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (acft)	Hydrograph Description
1	SCS Runoff	2.790	3	729	0.267				EXWS 10 (POA A)
2	SCS Runoff	7.048	3	735	0.826				EXWS 20 (POA B)
3	SCS Runoff	0.009	3	744	0.002				EXWS 30 (POA C)
4	SCS Runoff	0.002	3	891	0.001				EXWS 40 (POA D)
5	SCS Runoff	16.89	3	729	1.525				PRWS 21
6	Reservoir	2.423	3	768	0.956	5	60.03	0.755	DET 210
7	SCS Runoff	2.477	3	726	0.203				WS 20
8	SCS Runoff	0.593	3	729	0.079				PRWS 10 (POA A)
9	Combine	3.011	3	729	1.160	6, 7,			POA B
10	SCS Runoff	0.090	3	726	0.008				PRWS 30 (POA C)
11	SCS Runoff	0.001	3	891	0.000				PRWS40 (POA D)
<u>н</u> лі	DRO 03-Red		in anw		Return	Period: 25 Y	/ear	Monday 1	2 / 7 / 2020


Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (acft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (acft)	Hydrograph Description	
1	SCS Runoff	3.637	3	729	0.340				EXWS 10 (POA A)	
2	SCS Runoff	9.759	3	735	1.093				EXWS 20 (POA B)	
3	SCS Runoff	0.020	3	738	0.004				EXWS 30 (POA C)	
4	SCS Runoff	0.004	3	750	0.002				EXWS 40 (POA D)	
5	SCS Runoff	20.39	3	729	1.842				PRWS 21	
6	Reservoir	4.013	3	759	1.256	5	60.43	0.885	DET 210	
7	SCS Runoff	3.297	3	726	0.263				WS 20	
8	SCS Runoff	1.037	3	729	0.114				PRWS 10 (POA A)	
9	Combine	4.683	3	750	1.519	6, 7,			POA B	
10	SCS Runoff	0.131	3	726	0.011				PRWS 30 (POA C)	
11	SCS Runoff	0.002	3	750	0.001				PRWS40 (POA D)	
HY	HYDRO 03-Reduced Basin.gpw					Return Period: 50 Year			Monday, 12 / 7 / 2020	


lyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (acft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (acft)	Hydrograph Description
1	SCS Runoff	4.610	3	729	0.424				EXWS 10 (POA A)
2	SCS Runoff	12.94	3	735	1.407				EXWS 20 (POA B)
3	SCS Runoff	0.039	3	732	0.006				EXWS 30 (POA C)
4	SCS Runoff	0.014	3	744	0.003				EXWS 40 (POA D)
5	SCS Runoff	24.25	3	729	2.196				PRWS 21
6	Reservoir	9.253	3	750	1.596	5	60.71	0.972	DET 210
7	SCS Runoff	4.245	3	726	0.332				WS 20
8	SCS Runoff	1.619	3	726	0.157				PRWS 10 (POA A)
9	Combine	10.65	3	747	1.928	6, 7,			POA B
10	SCS Runoff	0.180	3	726	0.015				PRWS 30 (POA C)
11	SCS Runoff	0.007	3	744	0.002				PRWS40 (POA D)
<u> </u>	DRO 03-Red		in grw		Return	Period: 100	Vear	Monday 1	2 / 7 / 2020

ATTACHMENT G WATERSHED MAPS

N/F Angelo, Jr. & Annette Angiollo ×^{56.9} A GROUN NOT VISIBLE *N/F Anthony A. Dattilo & Audrey E. Betta* Α ()N/F North Haven Congregational Church SAN MH T.F.=52.13— INV.=±45.29 _____ SAN -N/F William J. & Jean M. Pieper 53.2 × Α OAD R ASSET N/F Richard Pieper WS 10 N/F Kathleen M. Pieper, ET AL A └─*T.G.*=78.05 INV.=72.9(W)

